
THE CRITICAL SLEEP RATE FOR ACTIVATED RANDOM
WALK ON THE CYCLE WITH ONE CHIP PER VERTEX

HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

ABSTRACT. Activated random walk (or ARW) is a random process with
chips on a graph that may fall asleep or wake each other up. It has
one parameter, the sleep rate λ . In the extreme case where ARW starts
with one chip on every vertex of a cycle of length L, we find a precise
boundary λ = 1

2 logL between ’fast sleep’ and ’slow sleep’ regions.

CONTENTS

1. Activated random walk 1
2. ARW on the cycle with one chip per vertex 2
2.1. Sorted configurations 3
2.2. Big steps 3
3. Lower and upper bounds on the total process 4
3.1. A positive recurrence for the increments. 4
3.2. A lower bound for the expected time 5
3.3. An upper bound on the expected number of big steps 6
3.4. The number of small steps until sleep 15
4. Higher dimensions 19
4.1. Bounds on the expected sleep time for dimension ≥ 3 19
4.2. Bounds for d = 2. 21
4.3. The proof of the half-visited lemma 23
References 26

1. ACTIVATED RANDOM WALK

We describe the activated random walk process. Let G = (V,E) be an
undirected graph, and let λ be a nonnegative real number called the sleep
rate. Each vertex on the graph is in one of the following states:

• it can be empty;
• it can have one sleeping chip on it;
• or it can have any positive integer number of activated chips on it.

Date: October 24, 2022.
1

2 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

The graph starts in some initial configuration, and then proceeds step by
step. At each step, we choose a vertex v ∈V with at least one activated chip
on it. If there are none, the process has stabilized and we are done.

We are allowed to choose any suitable vertex we want, with the constraint
that we can’t ignore an active vertex forever: if a vertex is active at some
point in the process, it must be chosen at some later time.

Once we have chosen a vertex with an activated chip on it, we flip a
weighted coin that comes up heads with probability q = λ/(1+λ).

• If the coin is heads, and v has only one activated chip, that chip falls
asleep. If there are two or more chips on v, then nothing changes.
• If the coin is tails, then we move one of the chips on v to one of the

adjacent vertices w∼ v, chosen uniformly at random.
If an activated chip lands on a vertex with a sleeping chip, the sleeping

chip wakes up, so that there are now two activated chips on that vertex.
When many chips are sleeping in a region, the arrival of a single activated
chip can start a powerful chain reaction.

This is a so-called abelian network, meaning that neither the final con-
figuration nor the number of times each vertex is chosen depends on the
arbitrary choices which we make.

With our setup, if a vertex has more than one chip on it, none of the chips
will move until our weighted coin comes up tails, which takes λ + 1 flips
on average. If λ is large, a typical activated chip will follow a very lazy
random walk until it finds an empty vertex, and then fall asleep right there.

2. ARW ON THE CYCLE WITH ONE CHIP PER VERTEX

Our graph will be the cycle of length L, and we’ll start with one activated
chip on every vertex. We run our process until all the chips fall asleep, and
measure the total number of steps taken.

Our main theorem is as follows.

Theorem 2.1. Suppose that we run the activated random walk process with
sleep rate λ on the cycle of length L, with one chip on each vertex.

If λ is less than 1−ε

2 logL for ε > 0, the expected sleep time is at least eLε

.
If λ is greater than 1+ε

2 logL, the expected time is at most 128L2(1+ ε)/ε ,
and on the boundary line λ = logL, the expected time is at most 400L2 logL.

The lower bound in the slow case, when λ < 1−ε

2 logL, is Theorem 3.1.
The upper bound in the fast case is Theorem 3.3.

In the fast case, the expected sleep time is O(L2), but the tail probabilities
decay more slowly. This behavior is described in Theorem 3.10.

We also discuss the higher-dimensional analogue. To fall asleep quickly
in three or more dimensions, the sleep rate has to be of order Ld , so high

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 3

that all the chips are likely to fall asleep before any of them move. In two
dimensions, the rate can be slightly smaller: we can fall asleep quickly if
the rate is ∼ L2/ logL. These statements are proven in Theorems 4.3, 4.4.

2.1. Sorted configurations. Let’s say that the process is sorted if there is
one chip on each vertex, and the activated chips are in a single contiguous
segment of the cycle. The cycle is symmetric, so all that matters is the
length of the active segment.

The abelian property allows us to choose any vertex with an active chip
on it. If the process is sorted, we always choose the rightmost vertex in the
active segment. When we do that, the active chip will fall asleep with prob-
ability λ/(1+λ). If that happens, then the process will still be organized,
and there will be one fewer chip in the active segment.

If the chip doesn’t fall asleep, which happens with probability 1/(1+λ),
then it will move to one of the adjacent vertices. That vertex already had a
chip on it, so there are now two chips, and they will both wake up if they
weren’t awake already. We continue to activate any vertex with two chips
on it at each step. Eventually, a chip will fall back into the empty vertex.

Another way to think of this is that the chip which we started with carries
out a simple random walk on the cycle until it returns to its original position,
waking up every sleeping chip that it visits. This won’t separate the sleeping
segment into two pieces, because the walk starts from a vertex in the active
segment. Therefore, once the chip returns, the process is again sorted.

2.2. Big steps. If the process is sorted, say with x activated chips, we run
the process as above until it’s sorted again with some random number X of
active chips. We call this a big step.

If we start with x = 0, then all chips are asleep and the process has
stopped. If not, then there is a single segment of vertices with active chips.
We choose the active vertex on the right end of the segment. The process is
sorted, so there is only one chip on it. With probability λ/(1+λ), the chip
falls asleep, and the process is sorted again with one fewer active chip.

If that doesn’t happen, then the chip moves one vertex to the right or left,
and begins a simple random walk on the cycle which stops when it reaches
its original position. Every chip that is visited during the walk will wake
up, although some may be already activated.

Let J be the maximum distance from the origin that is reached by the
simple random walk before it stops. If the walk goes all the way around the
cycle and comes back to the original position from the other side, let J = L.
By the gambler’s ruin calculation, P(J ≥ j) = 1/ j when j ≤ L.

If the chip moves to the right, it enters the segment of sleeping chips,
and it wakes up every chip it reaches before it returns to the starting vertex.

4 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

If the walk crosses the whole segment, then all the chips wake up. So the
count of activated chips after the big step is (J+ x)∧L.

If the chip moves to the left on the first step, then it has to cross the rest
of the activated segment before it starts waking up sleeping chips. So in this
case the number of activated chips is ((J + 1)∨ x)∧ L. Here we add one
to J because we moved one vertex left before starting, so we begin on the
second vertex from the right in the activated segment.

Summarizing, if x ∈ {0, . . . ,L} is the total number of activated chips be-
fore a big step, then the number of activated chips afterward is

X =

with independent probability

x−1 q
((J+1)∨ x)∧L 1

2(1−q)
(J+ x)∧L 1

2(1−q)

We can use this transition as the single step of a Markov chain, which we
will call the total process. It tracks the total number of activated chips in
the random walk after each big step. Studying this Markov chain will give
us answers about our activated random walk.

3. LOWER AND UPPER BOUNDS ON THE TOTAL PROCESS

In this section we find lower and upper bounds on the expected time for
the total process to reach 0 from L, proving Theorem 2.1. The proof relies
heavily on the fact that the total process never decreases by more than one
at any step, which lets us derive recurrences for several functions.

3.1. A positive recurrence for the increments. Let h(x) be the expected
number of steps that the total process takes to reach zero from x. Let
δh(x) = h(x+ 1)− h(x). We’ll find a simple expression for δh(x− 1) in
terms of δh(x), . . . ,δh(L−1).

If x 6= 0, then h(x) = 1+∑y pxyh(y), where pxy are the transition proba-
bilities for the total process. Writing this out explicitly,

h(x) = 1+qh(x−1)+
1−q

2

∞

∑
j=1

h(((j+1)∨ x)∧L)
j(j+1)

+
1−q

2

∞

∑
j=1

h((j+ x)∧L)
j(j+1)

for x = 1, . . . ,L. For convenience, let’s set h(x) := h(L) for x > L, so that
we can write this as

h(x) = 1+qh(x−1)+
1−q

2

∞

∑
j=1

h((j+1)∨ x)
j(j+1)

+
1−q

2

∞

∑
j=1

h(j+ x)
j(j+1)

.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 5

Rearrange this to get the expression

q(h(x)−h(x−1)) = 1+
1−q

2

∞

∑
j=1

h((j+1)∨ x)−h(x)
j(j+1)

+
1−q

2

∞

∑
j=1

h(j+ x)−h(x)
j(j+1)

.

Here we have used the fact that ∑
∞
j=1 1/ j(j+1) = 1.

Replace h(b)−h(a)= δh(a)+ · · ·+δh(b−1) and collect the coefficients
of each h(j). For example, we rewrite

∞

∑
j=1

h((j+1)∨ x)−h(x)
j(j+1)

=
∞

∑
j=1

∑
i≥x,

i< j+1

δh(i)
j(j+1)

= ∑
i≥x, j≥i

δh(i)
j(j+1)

= ∑
i≥x

δh(i)
i

.

Do this for both sums and solve for δh(x−1). We get the recurrence

δh(x−1) =
1
q
+

1
2λ

∞

∑
j=x

δh(j)
(

1
j
+

1
j− x+1

)
(1)

for x = 1, . . . ,L, with the boundary condition δh(x) = 0 for x≥ L.
We can use this as a recurrence to estimate the function δh. Note that all

the coefficients are nonnegative.

3.2. A lower bound for the expected time. When λ is smaller than 1
2 logL,

we can get a stretched-exponential lower bound for the expected time from
this recurrence.

Theorem 3.1. If λ < 1−ε

2 logL, the expected sleep time is at least eLε

.

Proof. Let z := 1− e−2λ . Let f (x) := zx−L+1/q. We’ll prove by induction
that δh(x)≥ f (x), going downward from x = L−1 to 0.

6 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

First, δh(L− 1) = 1/q = f (L− 1), so the base case holds. Suppose
δh(j)≥ f (j) for j ≥ x. Then

δh(x−1) =
1
q
+

1
2λ

L−1

∑
j=x

δh(j)
(

1
j
+

1
j− x+1

)

≥ 1
q
+

1
2λ

L−1

∑
j=x

δh(j)
j− x+1

≥ 1
q
+

1
2λ

L−1

∑
j=x

f (j)
j− x+1

≥

(
1
q
− 1

2λ

∞

∑
j=L

f (j)
j− x+1

)
+

1
2λ

∞

∑
j=x

f (j)
j− x+1

We chose our constant z so that the sum ∑
∞
j=1 z j/ j = log1/(1−z) is equal

to 2λ , and so the second summand is

1
2λ

∞

∑
j=x

f (j)
j− x+1

=
zx−L

2λq

∞

∑
j=x

z j−x+1

j− x+1
=

zx−L

2λq

∞

∑
j=1

z j

j
=

zx−L

q
= f (x−1).

This also means that
1

2λ

∞

∑
j=L

f (j)
j− x+1

≤ 1
2λ

∞

∑
j=L

f (j)
j−L+1

=
1
q
,

so the term in parentheses is positive. Therefore, δh(x−1)≥ f (x−1).
That’s the induction step, so we can proceed by induction and conclude

that δh(x)≥ zx−L+1/q for 0≤ x≤ L−1.
The expected time is h(L)≥ δh(0), which is at least z−L+1/q. However,

z is at least q, because (1− z)−1 = e2λ is at least 1+λ = (1−q)−1, so we
can use the simpler bound

h(L)≥ (1− e−2λ)L ≥ exp(Le−2λ).

We are assuming that λ < 1−ε

2 logL, so e−2λ > e(1−ε) logL = L1−ε . There-
fore, the expected sleep time is at least

exp(Le−2λ)≥ exp(L/L1−ε) = exp(Lε).

This proves the first half of Theorem 2.1. �

3.3. An upper bound on the expected number of big steps. If the sleep
rate λ is at least 1

2 logL, then the lower bound from the last section is 1. We
can get a better bound just by observing that it takes at least one step for
each chip to fall asleep, so it takes at least L big steps to get from L to 0.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 7

In this section, we will get an upper bound on the expected number of big
steps. If λ ≥ 1+ε

2 logL for ε > 0, we get the bound 128L(1+ ε)/ε , and for
any sleep rate λ ≥ 1

2 logL, we get a uniform bound 400L logL.

3.3.1. Our goal: a function that satisfies the inequality. We start with the
recurrence from before:

δh(x−1) =
1
q
+

1
2λ

L−1

∑
j=x

(
1
j
+

1
j− x+1

)
δh(j).

We can lower the top bound of the sum to L−1 because δh(j) = 0 for j≥ L.
We’ll exhibit a function that satisfies the inequality

(2) f (x)≥ 1
q
+

1
2λ

L−1

∑
j=x+1

(
1
j
+

1
j− x

)
f (j).

A function like that must be an upper bound on δh by an easy induction, as
we’ll see in Theorem 3.6.1

The coefficients in the sum add up to about logL when x≈ L, and add up
to about 2 logL when x ≈ 0. So δh(x) grows only slowly for most x, but it
starts to grow sharply when x is close to zero. So our explicit upper bound
will have to have a singularity at x = 0, but it shouldn’t be too bad because
we want to bound h(L)≤ ∑δh(x)≤ ∑ f (x) by something of order L.

It turns out that we can use functions of the form a logn(L/x)+b, and we
spend the rest of this section finding a particular function that works.

3.3.2. Wrestling with the inequality. We’ll start by proving a related in-
equality about a function ψ which has that form more or less. The proof
uses two lemmata about a delicate and unpleasant integral inequality. Those
are proven immediately afterward.

Once that ordeal is over, we write down an explicit upper bound for δh
in Theorem 3.5 and prove it in Theorem 3.6, which gives us an upper bound
for the expected number of big steps until sleep.

Theorem 3.2. Let ψ(x) := log2(L/x)+ 1
16 for x ≥ 1 and ψ(0) = 3ψ(1).

Then

ψ(x)≥ 1
100logL

+
1

logL

L−1

∑
j=x+1

(
1
j
+

1
j− x

)
ψ(j).

Note. The proof should go through for any function logn(L/x)+ c where
n ≥ 2 and 0 ≤ c < 1/16. The statement is probably true even when c = 1,
although the approximations we use don’t work.

1We can push this inequality back through the calculation earlier in reverse to see that
it holds if and only if F(Xn)+n is a supermartingale, where F(x) = f (0)+ · · ·+ f (x−1)
and Xn is the total process stopped at zero.

8 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

Proof. If x = 0, then the right side is at most

2ψ(1)
logL

(
1+

1
2
+ · · ·+ 1

L−1

)
≤ 2ψ(1)

logL+1
logL

≤ 3ψ(1).

If x≥ 1, then we can take y = x/L, δ = 1/L and plug it into Lemma 3.3.
We do indeed have 0 < δ ≤ y≤ 1−δ , so we get the inequality

ϕ(y) log1/δ −ϕ(y+δ)

(
δ

y+δ
+1
)
−
∫ 1

y+δ

(
1
t
+

1
t− y

)
ϕ(t)dt ≥ 1

100
.

where ϕ(y) = log2(1/y)+ 1
16 as in the lemma. Substitute y = x/L,δ = 1/L,

and also substitute s = Lt in the integral:

ψ(x) logL−
(

ψ(x+1)
(

1
x+1

+1
)
+
∫ L

x+1

(
1
s
− 1

s− x

)
ψ(s)ds

)
≥ 1

100
.

We have made the substitution s = Lt.
The integral is an upper bound on the part of the sum from x+2 to L:∫ L

x+1

(
1
s
− 1

s− x

)
ψ(s)ds≥

L−1

∑
j=x+2

(
1
j
− 1

j− x

)
ψ(j),

and the other part is the first summand, the one for j = x+1. Therefore,

ψ(x) logL−
L−1

∑
j=x+1

(
1
j
+

1
j− x

)
ψ(j)≥ 1

100
.

Divide the whole thing by logL and move the sum to the right-hand side to
get the inequality in the statement. �

We’ll use this to show that f (x) = 32ψ(x)/ε satisfies the inequality (2),
but first we need the supporting Lemma 3.3 and another one, Lemma 3.4.

Lemma 3.3. Let ϕ(y) := log2(1/y)+ 1
16 . If 0 < δ ≤ y < 1−δ , then

ϕ(y) log1/δ −ϕ(y+δ)

(
δ

y+δ
+1
)
−
∫ 1

y+δ

(
1
t
+

1
t− y

)
ϕ(t)dt ≥ 1

100
.

Note. The method of its construction is probably more interesting than
the proof itself. The formulas were separated into several pieces and tested
numerically to check which approximations appeared viable.2

2The tool for this was Jupyter with Python. Cython was used to calculate the sums,
because otherwise experimentation would have been too slow. The Taylor series trick
came from the observation that two of the large terms usually came close to cancelling out,
and another smaller term was nearly equal to the remainder.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 9

Proof. First we consider the larger range 0< y< 1 and 0< δ ≤ 1−y. We’ll
write the left side of the inequality above as F(y,δ)+G(y,δ) where

F(y,δ) := ϕ(y) log(1/δ)−
∫ 1

y+δ

1
t− y

ϕ(t)dt−ϕ(y+δ)

is chosen so that it will mostly cancel out, and G is the rest.
Let a := y+δ and A := log1/a. Then the part that’s left over is

G(y,δ) :=−ϕ(y+δ)
δ

y+δ
−
∫ 1

y+δ

ϕ(t)
t

dt

=−A2− 1
16

+
y
a

(
A2 +

1
16

)
− A3

3
− A

16
.

We evaluate the integral
∫ 1

y+δ
ϕ(t)/t dt =− log(y+δ)3/3− log(y+δ)/16,

write δ/(y+δ) = 1− y/a, and expand everything out.
We put this part aside for now and focus on F . Differentiate F on the

second parameter δ , and then write the result as an integral:

∂F
∂δ

=−ϕ(y)−ϕ(y+δ)− (−δ)ϕ ′(y+δ)

δ

=− 1
δ

∫ y+δ

y
(t− y)ϕ ′′(t)dt.

In the second step we use ϕ(y)−ϕ(a)− (y− a)ϕ ′(x) =
∫ y

a (y− t)ϕ ′′(t)dt,
the formula for the remainder of a first-order Taylor series, with a = y+δ .

The next step is to write F(y,δ) as the sum of F(y,1−y) and the integral
of the derivative, and then change the order of integration. In what follows
we write θ(y) := F(y,1− y).

F(y,δ) = F(y,1− y)+F(y,δ)−F(y,1− y)

= θ(y)−
∫ 1−y

δ

∂F
∂δ

(y,s)ds

= θ(y)+
∫ 1−y

δ

[
1
s

∫ y+s

y
(t− y)ϕ ′′(t)dt

]
ds

= θ(y)+
∫ 1

y
(t− y)ϕ ′′(t)

[∫ 1−y

δ∨(t−y)

1
s

ds
]

dt

= θ(y)+
∫ 1

y
(t− y)ϕ ′′(t) log

1− y
δ ∨ (t− y)

dt.

The double integral is over s, t with δ ≤ s ≤ 1− y and y ≤ t ≤ y+ s. This
shape is a right triangle with one corner truncated. When those bounds are
reversed, the bound on t becomes y ≤ t ≤ 1, and s now has to satisfy three
inequalities: δ ≤ s≤ 1− y and t− y≤ s.

10 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

The integrand is nonnegative, because ϕ ′′(t) = 2(1 + log(1/t))/t2, so
shrinking the integral will make it smaller. Move the lower endpoint up to
y+ δ . Then t− y ≥ δ on the interval of integration, and y ≤ t ≤ 1, so we
can bound the fraction in the logarithm:

1− y
δ ∨ (t− y)

=
1− y
t− y

≥ 1
t
.

Then we get a simpler bound that has a closed form.

F(y,δ)≥ θ(y)+
∫ 1

y+δ

(t− y)ϕ ′′(t) log(1/t)dt

= θ(y)+2y
(

1− 1
a
+

A
a
− A2

a

)
+A2 +

2A3

3
.

The integral can be evaluated with the substitution t = e−s.
Now, we look back to see what G(y,δ) is, and add it. The A2 terms cancel

out completely, the A2/a terms partly cancel out, and we wind up with

F(y,δ)+G(y,δ)≥ θ(y)+ cy+d,

where c and d don’t depend on y, only on the sum a = y+δ :

c = 2− 2
a
+

2A
a
− A2

a
+

1
16a

, d =− 1
16

+
A3

3
− A

16
.

This looks awful, and it is awful, but it will all work out. In fact, by the
lemma after this one, θ(y)+ cy+ d ≥ 1/100 whenever a/2 ≤ y < a ≤ 1.
Those inequalities hold by our assumption that δ ≤ y ≤ 1− δ . Therefore,
F +G is at least 1/100, and the theorem is true. �

We have pushed our most tedious calculations into this next lemma, but
it isn’t all that bad. We just have to get out the calculator and check some
bounds on θ(y), and then bound some polynomials.

Lemma 3.4. If a/2≤ y < a≤ 1, then

θ(y)+ cy+d ≥ 1/100,

where θ(y) := F(y,1− y) is defined in Lemma 3.3 and

c = 2− 2
a
+

2A
a
− A2

a
+

1
16a

, d =− 1
16

+
A3

3
− A

16
, A := log1/a.

Proof. First of all, we write out θ(y) explicitly. The upper and lower limits
of the integral are the same, so it drops out and

θ(y) = F(y,1− y) = ϕ(y) log1/(1− y)−ϕ(1)

=

(
log2(1/y)+

1
16

)
log1/(1− y)− 1

16
.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 11

We want to get lower bounds on this function, which we will do by brute
force. If y0 ≤ y1, then we have the obvious lower bound from monotonicity

(log2(1/y1)+
1
16) log(1/(1− y0))− 1

16 ≤ θ(y) on [y0,y1].

We use this on each of the intervals [0
20 ,

1
20], . . . , [

19
20 ,

20
20] to get lower bounds:

y0 y1 bound
0/20

1/20 −0.0625
1/20

2/20 0.2126
2/20

3/20 0.3232
3/20

4/20 0.3686
4/20

5/20 0.3802
5/20

6/20 0.3724
6/20

7/20 0.3528
7/20

8/20 0.3261
8/20

9/20 0.2951
9/20

10/20 0.2620

y0 y1 bound
10/20

11/20 0.2285
11/20

12/20 0.1957
12/20

13/20 0.1648
13/20

14/20 0.1366
14/20

15/20 0.1123
15/20

16/20 0.0931
16/20

17/20 0.0805
17/20

18/20 0.0771
18/20

19/20 0.0874
19/20

20/20 0.1247

The function is roughly N-shaped. The things to notice in this table are:

• θ(y) is always at least − 1
16 .

• θ(y)≥ 0.135 = 1
8 +

1
100 on [1/2e2,1/e].

• θ(y)≥ 0.0725 = 1
16 +

1
100 on [1/2e,1].

Four places of precision are good enough to check this, if we also remember
that 1/8≤ 1/e2 and 1/e≤ 1/2.

Now, a/2 ≤ y < a by assumption, so cy+ d is at least the minimum of
ca+d and ca/2+d. We can get a simple lower bound for ca+d as follows:

ca+d =

(
2a−2+2A−A2 +

1
16

)
+

(
− 1

16
+

A3

3
− A

16

)
= 2a−2+

31
16

A−A2 +
A3

3

≥− A
16

.

The last step uses the inequality a = e−A ≥ 1−A+A2/2−A3/6, which is
valid for all A≥ 0.3

3Integrate e−x ≥ 0 four times to get the sequence of inequalities 1− e−x ≥ 0, x− 1+
e−x ≥ 0, x2/2− x+1− e−x ≥ 0, x3/6− x2/2+ x−1+ e−x ≥ 0.

12 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

We will also set P(A) :=−2+ 31
16A−A2 +A3/3, so ca+d = 2a+P(A).

For later, we record the fact that P′(A) = 31
16 −2A+A2 is at least (A−1)2,

which is always positive, so P is an increasing function of A.
Now we will show that θ(y)+ ca+d ≥ 1

100 everywhere by breaking the
interval [0,1] into three pieces, [0,1/e2]∪ [1/e2,1/e]∪ [1/e,1].

Case 1a. Let 0 ≤ a ≤ 1/e2. Then A ≥ 2, and ca+ d ≥ P(A) ≥ P(2) =
13/24. Therefore, θ(y)+ ca+d ≥ 13

24 −
1
16 ≥

1
100 .

Case 1b. Let 1/e2 ≤ a≤ 1/e. Then 1/2e2 ≤ y≤ 1/e, so θ(y)≥ 1
8 +

1
100 .

Therefore, θ(y)+ ca+d ≥ 1
8 +

1
100 −

1
16A≥ 1

100 .

Case 1c. Let 1/e ≤ a ≤ 1. Then 1/2e ≤ y ≤ 1, so θ(y) ≥ 1
16 +

1
100 .

Therefore, θ(y)+ ca+d ≥ 1
16 +

1
100 −

1
16A≥ 1

100 .

We can do the same thing to get a lower bound for ca/2+d.

ca/2+d =

(
a−1+A− A2

2
+

1
32

)
+

(
− 1

16
+

A3

3
− A

16

)
= a− 33

32
+

15
16

A− A2

2
+

A3

3

≥− 1
32
− A

16
+

A3

6
.

Again, the last step uses the inequality a = e−A ≥ 1−A+A2/2−A3/6.
Let Q(A) be the above polynomial, that is, Q(A) := − 1

32 −
1
16A+ 1

6A3.
Then the derivative of Q on A is (8A2−1)/16, which is positive when A >
1/
√

8 and negative when 0≤ A < 1/
√

8. Therefore, the minimum of Q is

min
A≥0

Q(A) = Q
(

1√
8

)
=− 1

24
√

8
− 1

32
≥− 1

16

and the minimum of Q on [2,∞) is Q(2) = 113
96 ≥ 1.

We will show that θ(y)+ca/2+d is at least 1
100 by breaking the interval

into two pieces, [0,1] = [0,1/e2]∪ [1/e2,1].

Case 2a. Let 0≤ a≤ 1/e2, or A≥ 2. Then ca/2+d ≥Q(A)≥Q(2)≥ 1,
and θ(y)≥− 1

16 , so the sum θ(y)+ ca/2 is certainly at least 1
100 .

Case 2b. Let 1/e2 ≤ a ≤ 1. Then 1/2e2 ≤ y ≤ 1, so θ(y) is at least
1

16 +
1

100 , and Q(A)≥ Q(1/
√

8)≥− 1
16 , so θ(y)+ ca/2+b is at least 1

100 .

We’ve gone case by case and proven that both of the bounds are always
at least 1

100 , so θ(y)+ cy+d ≥ 1
100 and the lemma is true. �

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 13

We didn’t get much conceptual insight from the proof of this lemma. All
we’ve done is verify that a function of the form logn 1/y+ c really does
satisfy the inequality in Lemma 3.3. But, having done this tedious work,
we now cash it in to get the inequality that we promised earlier.

Theorem 3.5. Suppose 0 ≤ ε , λ ≥ 1+ε

2 logL, L ≥ 8. Let f := 32ψ
1+ε

ε
or

f := 100ψ logL, whichever is smaller. Then for all x = 0, . . . ,L−1,

f (x)≥ 1
q
+

1
2λ

L−1

∑
j=x+1

(
1
j
+

1
j− x

)
f (j).

Proof. If f = 100ψ logL, we start with the inequality from Theorem 3.2,
multiply both sides of it by 100logL, and decrease the coefficient of the
sum from 1/ logL to 1/2λ . That gives us the above inequality immediately.

In the case where f = 32ψ(1+ ε)/ε , we will exploit the hard-won fact
that ψ ≥ 1

16 . Let t := 1− log(L)/2λ , which by our assumption is at least
ε/(1+ ε). Write 1 = t +(1− t) and use the inequality from Theorem 3.2.

ψ(x) = tψ(x)+(1− t)ψ(x)

≥ tψ(x)+(1− t)
1

logL ∑

(
1
j
+

1
j− x+1

)
ψ(j)

= tψ(x)+
1

2λ
∑

(
1
j
+

1
j− x+1

)
ψ(j).

Multiply this all by 32(1+ ε)/ε ≥ 32/t, and recall that ψ(x)≥ 1
16 .

f (x)≥ 2+
1

2λ
∑

(
1
j
+

1
j− x+1

)
f (j)

≥ 1
q
+

1
2λ

∑

(
1
j
+

1
j− x+1

)
f (j).

In the last step we used the assumption that L ≥ 8, so the sleep rate is at
least 1

2 logL≥ 1 and 1/q≤ 2. �

3.3.3. An upper bound on the number of big steps. We apply the analytical
nonsense in the previous section to bound the expected number of big steps.

Theorem 3.6. Start the activated random walk on the cycle of length L
with sleep rate λ ≥ 1+ε

2 logL and one chip on each vertex, all awake. The
expected number of big steps before the walk sleeps is at most

min
{

128(1+ ε)

ε
,400logL

}
L.

Proof. Let f be as in the previous theorem, that is, f = 32ψ(1+ ε)/ε or
f = 100ψ logL, whichever is smaller.

14 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

Write f (x;L) to make the dependence on L explicit. Let h(x;L) be the
expected number of big steps that it takes for the total process to reach
zero from x, as in Section 3.3. We proved that the successive differences
δh(x;L) := h(x+1;L)−h(x;L) satisfy a recurrence:

δh(x;L) =
1
q
+

1
2λ

L−1

∑
j=x+1

(
1
j
+

1
j− x

)
δh(j;L).

Suppose f (j;L)≥ δh(j;L) for j = x+1, . . . ,L−1. By Theorem 3.5,

f (x;L)≥ 1
q
+

1
2λ

L−1

∑
j=x+1

(
1
j
+

1
j− x

)
f (j;L)

≥ 1
q
+

1
2λ

L−1

∑
j=x+1

(
1
j
+

1
j− x

)
δh(j;L)

= δh(x;L),

and by induction downward we have f ≥ δh for x = 0, . . . ,L−1. The base
case is x = L−1, where f (x;L)≥ 1/q and δh(x;L) = 1/q.

Therefore, the expected number of big steps that it takes to reach 0 from
L is at most f (0)+ · · ·+ f (L−1). We have an explicit formula for f , so we
can estimate that. First, the sum of ψ(0)+ · · ·+ψ(L−1) is

L−1

∑
x=0

ψ(x;L) = ψ(0;L)+
L−1

∑
x=1

ψ(x;L)

≤ ψ(0;L)+
∫ L

0
log2(L/t)+

1
16

dt.

= ψ(0;L)+33L/16
≤ 4L.

Here the integral of
∫ L

0 log2(L/t)dt is 2L, and in the last step we use the
inelegant bound ψ(0;L) = 3log2 L+ 3/16 ≤ 31L/16. This is clearly true
for large L, and in fact it holds for all L≥ 1.4

If we multiply this by the minimum of 32(1+ε)/ε and 100logL, we get
the result. The expected time to reach 0 from L is at most

h(L;L)≤min
{

128(1+ ε)

ε
,400logL

}
L.

This is what we wanted. �

4The derivative d
dL (31L/16− 3log2 L− 3/16) = 31/16− 6logL/L is negative when

L≥ 8, because 6logL/L≤ 12/e2 ≤ 12/7, and the bound holds for L = 1, . . . ,8.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 15

Of course, the concept of ‘big steps’ was something we introduced to
simplify the situation. We’re really trying to figure out how long the model
takes to fall asleep, measured in terms of small steps. In the next section,
we’ll bound the expected number of small steps and estimate the tail.

3.4. The number of small steps until sleep. In this section, we get an
upper bound on the expected sleep time, which proves the second part of
Theorem 2.1. We will also estimate the tail, which turns out to be long.

Theorem 3.7. The expected sleep time is at most 128(1+ε)L2/ε , and also
at most 400L2 logL.

Proof. Let Tq(x) be the time until a q-lazy random walk started at x leaves
the set {1, . . . ,L−1}. It’s well-known that E[Tq(x)] = x(L− x)/(1−q).5

At every big step, we have probability q of falling asleep, which takes
one small step. Otherwise, we take one step and then begin a q-lazy random
walk on the cycle, stopping when we return to our original position. This is
the same as a walk that’s started at 1 and stops when it leaves {1, . . . ,L−1},
so each big step takes q+(1−q)(1+E[Tq]) = L small steps on average.

Naively one would guess that the expected number of small steps is L
times the expected number of big steps, and this turns out to be correct.
However, the time taken is highly correlated with the state of the total pro-
cess: the more time we take, the more chips we may wake up. We’ll prove
the claim that the expected number of small steps is L times the number of
big steps to make sure that that intuition is not misleading.

Let Xn be the number of chips awake after the n-th big step, let Sn be the
number of small steps taken in the first n big steps, and let T be the number
of big steps it takes to hit zero for the first time, so that the number of small
steps it takes to hit zero is ST . Let Fn = σ(X1, . . . ,Xn,S1, . . . ,Sn) be the
filtration containing the history of the walk. Let Ex be the expectation when
the walk is started at x, so that for example E0[T] = 0 and Ex[T] = h(x).

If x is not zero, then we take at least one big step before stopping. By the
tower rule, linearity, and the Markov property of the total process,

Ex[ST] = Ex[S1 +E[ST −S1 |F1]] = L+Ex[EX1 [ST]]

when x 6= 0. The expectations are all clearly finite, so this is valid.
Let m(x) := Ex[ST]−Lh(x). Then m(x) = ∑y pxym(y), including at zero,

so m is a harmonic function on a finite irreducible Markov chain. It must be

5Here’s a proof: let Xn be a lazy random walk started at x and T be the first time it
leaves {1, . . . ,L− 1}. Then Mn := Xn(L−Xn)/(1− q)− n is a martingale with bounded
increments and T is a stopping time with E[T]< ∞. By Doob’s optional stopping theorem,
E[MT] = 0, so x(L− x)/(1−q) = E[T].

16 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

a constant, and m(0) = 0, so it’s zero. Therefore, Ex[ST] = Lh(x), and

EL[ST] = Lh(L;L)≤

{
128(1+ ε)L2/ε

400L2 logL

which is what we want to prove. �

3.4.1. The tail of the sleep time. As we mentioned in the last section, when
we take a big step, if the chip doesn’t fall asleep, it begins a q-lazy random
walk on the cycle, stopping when it returns to its original position.

Let’s say that the walk ‘gets stranded’ if it reaches the midpoint of the
cycle, which occurs with probability 2/L by the gambler’s ruin estimate.
If a walk does get stranded, then its return time decays roughly like an
exponential random variable, with mean of order L2/(1−q).

In what follows, let σ := L2/(1−q)π2.

Lemma 3.8. Let a q-lazy random walk be started at bL/2c. Let T be the
first time that it hits {0,L}. If L is sufficiently large and q≥ 1/2, then

P[T ≥ t]≥ P[U ≥ t] = e−2t/σ ,

where U is exponential with mean σ/2 = L2/2(1−q)π2.

Proof. Let the lazy walk be Xt . We couple it with another q-lazy random
walk as follows.

Let ψ(y) :=C sinπy/L, where C is chosen so that ∑y ψ(y) = 1. Let Yt be
a lazy random walk with starting point distributed according to ψ . Then,

qψ(y)+
1−q

2
ψ(y+1)+

1−q
2

ψ(y−1) = λψ(y),

where λ = (1−q)cosπ/L+q, so at any time t, P[Yt = y] = λ tψ(y) as long
as 1≤ y≤ L−1. Let U be the first time that this walk hits {0,L}. Then U
has a simple distribution: P[U ≥ t] = ∑

L−1
y=1 P[Ydte−1 = y] = λ dte−1 ≥ λ t .

If L is large enough, then cosπ/L≥ e−2π2/L2
by comparing power series,

so λ t ≥ (1− q)e−2tπ2/L2
+ qe0 ≥ e−2t(1−q)π2/L2

by the convexity. In other
words, we have P[U ≥ t]≥ e−2t/σ .

If we could couple these walks in such a way that Y always hits the
boundary of the interval before X , then T ≥U and we would have the result.
We do that in the following way:

• If Yt ∈ {0,L}, then it stays there and Xt takes a q-lazy random step.
• If Yt /∈ {0,L}, then:

– If Xt /∈ {Yt ,L−Yt}, we choose one of X ,Y uniformly at random.
That walk takes a (1/2+q/2)-lazy random step.

– If Xt =Yt , then Xt+1 =Yt+1, and both take a q-lazy random step.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 17

– If Xt = L−Yt and Xt 6=Yt , then Xt+1 = L−Yt−1 and both walks
take a q-lazy random step in opposite directions.

Both walks considered independently are q-lazy random walks. If X hits the
boundary, then it hits one of Yt or L−Yt first and couples with it. So with
this coupling, T ≥U , and we get the lower bound in the statement. �

We’ll prove an upper bound as well, although this bound will be about
walks that start at 1.

Lemma 3.9. Let a q-lazy random walk be started at 1. Let T be the first
time that it hits {0,L}. If L is sufficiently large and q≥ 1/2, then

P[T ≥ t +1]≤ P[U ≥ t] = e−t/4σ ,

where U is exponential with mean 4σ = 4L2/(1−q)π2.

Proof. Let Xt be this walk. We repeat the proof of the last lemma, coupling
to another walk Yt , but in this case, X0 = 1 and Y0 ∈ {1, . . . ,L− 1}, so the
hitting time of X is smaller than that of Y .

Recall from the last lemma that P[U ≥ t] = λ dte−1, so

P[T ≥ 1+ tL2/(1−q)]≤ P[U ≥ 1+ tL2/(1−q)]≤ λ
tL2/(1−q).

In this case, we use the bound λ = (1− q)cosπ/L + q ≤ e−π2(1−q)/4L2
,

which holds for sufficiently large L again by comparing power series. We
get the desired bound, P[T ≥ 1+ tL2/(1−q)]≤ e−π2t/4. �

With these upper and lower bounds for q-lazy random walk, we can show
that activated random walk on the cycle can take a long time to go to sleep.

Lemma 3.10. Start activated random walk on the cycle of length L≥ 8 with
one chip per vertex and sleep rate λ ≥ 1

2 logL. If we start with every chip
active, let T be the time to sleep. Then

1
2λ

e−2tπ2/L2 logL ≤ P[T ≥ t]≤ 3e−t/3600L2 logL.

Proof. Let tsleep be the expected number of small steps until sleep. This is
at most 400L2 logL by Theorem 3.7. By Markov’s inequality, we fall asleep
with probability at least 1

2 before 2tsleep small steps.
If we haven’t fallen asleep at that point, we start waiting for the end of

the current big step. (This might take a lot of small steps: we’re waiting for
a q-lazy random walk to hit the boundary.) Once that’s done, we start over:
we wait another 2tsleep steps and so on. Let N be the number of repetitions.

Let Tn be the time that we spend waiting for a big step at the end of the
n-th repetition. The worst case is that it starts out stranded.

We couple this process to the simpler process that goes as follows. To
start with, we wait 2tsleep steps, then flip a fair coin. If the coin is heads, we

18 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

wait for time Un+1, where Un is an exponential random variable with mean
4σ , and then go back to the start. By Lemma 3.9, P[Tn ≥ t]≤ P[Un+1≥ t].

Let M be the number of repetitions of this simpler process. We can couple
these together so that N ≤M and Tn ≤Un +1, and once we have done that,
the sum 2tsleepM+(U1 +1)+ · · ·+(UM +1) is an upper bound on T .

We proceed to get a bound on the tail. Here M ∼ Geom(1
2), so

P[(2tsleep +1)M ≥ t/2]≤ P[M ≥ t/6tsleep]≤ 21−t/6tsleep ≤ 2e−t/9tsleep .

The rest of the sum, U1 + · · ·+UM, is the sum of a Geom(1
2) number of

exponential random variables with mean 4σ , where σ = L2/π2(1−q) as in
the start of this section. Such a sum is itself exponentially distributed with
mean 8σ ,6 so we get the manageable bound

P[U1 + · · ·+UM ≥ t/2]≤ e−t/16σ .

Therefore,

P[T ≥ t]≤ P[2tsleepM ≥ t/2]+P[U1 + · · ·+UM ≥ t/2]

≤ 2e−t/9tsleep + e−t/16σ

≤ 3e−t/7200L2λ

because 9tsleep and 16σ = 16L2(1+λ)/π2 are both less than 7200L2λ . This
gives us the upper bound on the tail.

To get the lower bound (and justify the scale of the upper bound), we
estimate the probability that one of the big steps gets stranded.

We must make at least L big steps before the system falls asleep. At each
big step, the coin comes up tails with probability 1−q = 1/(1+λ), and the
walk reaches the midpoint with probability 2/L. The probability that one
of the steps gets stranded is at least 1− (1−1/L(1+λ))L, and we’ll bound
that below by 1/2λ , which is valid for sufficiently large L.

If a step does get stranded, then by Lemma 3.8, the probability that it
takes at least t steps to get back to the edge is at least e−2t/σ . Our assump-
tion is that λ ≥ 1

2 logL, so σ = L2(1+λ)/π2 ≥ L2 logL/2π2, and.

P[T ≥ t]≥ 1
2λ

e−2t/σ ≥ 1
2λ

e−2tπ2/L2 logL.

This is the lower bound that we claimed. �

Even when the sleep rate is very large, the lower bound on the tail proba-
bilities still has the same scale: P[T ≥ t] = Ω(e−t/σ) for λ fixed and t→∞.

6Suppose we start an exponential clock at rate r. When it rings, we stop with proba-
bility p, and otherwise we restart the clock. The time until we stop is a sum of Geom(p)
exponentials of rate r, but it’s also an exponential random variable with rate rp.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 19

Increasing the sleep rate decreases the chance that one of the walks will get
stranded, but that doesn’t have much effect on the tail probabilities.

4. HIGHER DIMENSIONS

One higher-dimensional analogue of the cycle is the torus Td :=Zd/(LZd)
with edge set {{x,x+ e j} : x ∈ Td,1 ≤ j ≤ d}. The situation is simpler on
the torus. For the sleep time to be small, the sleep rate must be of order Ld ,
so high that all chips are likely to fall asleep before any of them move.

We again break the ARW process up into a series of ‘big steps,’ using the
abelian property. At the start of every big step, each vertex has one chip on
it. If all the chips are asleep, we’re done. Otherwise, we pick some active
chip, if there are any, and flip the coin. If it comes up heads, the chip falls
asleep and the big step is over. Otherwise, it moves to a neighbour, and then
it does a q-lazy random walk until it returns to its original position, waking
up every chip it encounters. Once it returns, we have one chip on each
vertex again, and we make our next big step. We aren’t using the concept
of ‘sorted configurations’ in higher dimensions.

If x,x′ ∈ Z/LZ, denote the graph distance on the cycle by d(x,x′), and if
we have two vertices x,x′ ∈ Td , let d(x,x′) be max{d(x1,x′1), . . . ,d(xd,x′d)},
the maximum distance between corresponding coordinates. The largest
possible distance between two vertices is bL/2c.

Then we have the lemma:

Lemma 4.1 (Half-visited lemma). If x is as far as possible from x′, then
with probability at least 2−d−4, a simple random walk from x and stopped
at x′ visits at least half the vertices of the torus.

We’ll prove this later, in Section 4.3. For us, this means that if a single
activated chip leaves its starting point and does a random walk, and that
walk reaches a vertex at the maximum possible distance, then with constant
probability it will wake up at least half the other chips before returning.

4.1. Bounds on the expected sleep time for dimension ≥ 3. In this case,
the sleep time must be of order Ld for the system to fall asleep quickly.

We’ll first prove this lemma, which says that a single chip has probability
of waking up the whole torus:

Lemma 4.2. The probability that a random walk started at 0 visits at least
half of the vertices in Td before returning is at least 2−d−5.

Proof. It’s well-known that the probability that a simple random walk on Z3

never returns to its starting point is greater than zero. In fact, the probability
is 1/3I3 = 0.659462+, where I3 is a certain triple integral defined in [3]. If
d > 3, the probability is at least as large, so in any case it’s at least 1/2.

20 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

We can think of the walk on the torus as a walk on the infinite lattice
Zd modulo the larger lattice LZd . If the walk on the infinite lattice never
returns to its starting point, then the corresponding walk on the torus can
only return to the start after it reaches distance bL/2c from the start.

By Lemma 4.1, if the walk does reach distance bL/2c, then it visits at
least half of the vertices with probability at least 2−d−4. So, a walk on the
torus visits at least half the chips with probability at least 2−d−5.

Theorem 4.3. Let T be the sleep time of ARW on the torus Td , d ≥ 3, with
one chip on each vertex and sleep rate λ ≥ 1. Let L≥ 2. Then

1
8

exp
(

Ld

2d+7λ

)
≤ E[T]

L2d ≤ exp
(

Ld +1
λ

)
.

Proof. Upper bound. Let N be a counter, starting at zero. At the start of
each big step, we add one to N if our coin comes up heads, and we reset
it to zero if it’s tails. (Even after all the chips have fallen asleep, we keep
flipping coins, so that this process runs indefinitely.)

Eventually, we’ll have N = Ld . At that point, the last Ld coins have
all come up heads, so all the chips have fallen asleep without any of them
moving and the process is over. Let T1 be the first time when N = Ld . Then7

E[T1] =
q−Ld −1

1−q
≤ (1+λ)

(
λ

1+λ

)−Ld

≤ e(L
d+1)/λ .

In the last step, 1+ x ≤ ex, so x/(1+ x) = 1/(1+1/x) ≥ e−1/x. This is an
upper bound on the expected big steps before sleep.

By Proposition 1.14(ii) in [1], the average return time of the q-lazy ran-
dom walk on the torus is 1/π(x) = Ld , where we are counting the one-step
return that happens when the chip doesn’t move at the start. Therefore, each
big step takes Ld small steps in expectation, even conditional on the past.

Therefore, as in the proof of Theorem 3.7, the expected number of small
steps is Ld times the expected number of big steps, and we get

E[T]≤ LdE[T1]≤ Lde(L
d+1)/λ .

Lower bound. By Lemma 4.2, every big step visits at least half the chips
in the torus with probability ≥ 2−d−5(1−q) = 2−d−5/(1+λ).

Let’s call a step that visits at least half of the chips an ‘alarm.’ If we start
with dL/4e chips awake, the probability that they will all go to sleep without
an alarm is less than (1−2−d−5/(1+λ))Ld/4 ≤ exp(2−d−7Ld/(1+λ)).

7Check that f (n)= (q−Ld−q−n)/(1−q) satisfies the difference equation f (n)= q f (n+
1)+(1−q) f (0) and the boundary condition f (Ld)= 0, so the expected number of big steps
that it takes for the counter to reach Ld from n is f (n).

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 21

If an alarm does occur, there will be at least dL/2e chips awake afterward,
and it will take at least Ld/4− 1 ≥ Ld/8 big steps to get back into the
original situation. Again, the expected number of small steps is Ld times
the expected number of big steps, so:

E[T]≥ L2d

8
+(1− e−2−d−7Ld/λ)E[T],

or E[T]≥ L2d exp(2−d−7Ld/λ)/8. This is the lower bound. �

4.2. Bounds for d = 2. This case is almost the same, but the boundary
between fast and slow is at λ ∼ L2/ logL.

Let G(x) be the renormalized lattice Green’s function for the discrete
Laplacian on Zd . One way to define it is

G(x) = lim
n→∞

E[visits to x by time n]−E[visits to 0 by time n]

=
1

4π2

∫
π

−π

∫
π

−π

ei(xθ1+yθ2)−1
1− 1

2 cosθ1− 1
2 cosθ2

dθ1 dθ2.

We use the following properties of that function:

• G(x) is harmonic on Zd \{0},
• G(0) = 0, and G(1,0) = G(0,1) = G(−1,0) = G(0,−1) =−1,

• G(x) =− 2
π

log |x|+O(1), where |x|=
√

x2
1 + x2

2.

See for example Proposition 3.1 in [2], which gives the first asymptotic
terms of G. Note that our function is four times their G.

This function is harmonic away from the origin. Let X0, . . . be a simple
random walk on Z2 started at a neighbour of the origin. Let T be the first
time that Xn = 0 or |Xn| ≥ r. Then G(Xn∧T) is a bounded martingale. Let
Ar be the event that |Xn| ≥ r before Xn = 0. Then

−1 = E[G(X0)] = E[G(XT)] =−
2
π
P[Ar](logr+O(1)),

and we get a sharp estimate of the probability of reaching distance r before
hitting zero: P[Ar] = (π/2)/(logr+O(1)), which we will weaken slightly
to c/ logr ≤ P[Ar]≤C/ logr for some constants c,C > 0 and r ≥ 2.

Theorem 4.4. Let T be the sleep time of ARW on the torus T2 with one chip
on each vertex and sleep rate λ ≥ 9L3/2. There are positive constants c1,C1
so that, for large enough L,

1
8

exp
(

c1L2/ logL
1+λ

)
≤ E[T]

L4 ≤ 8exp
(

C1L2/ logL
1+λ

)
.

22 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

Proof. If a simple random walk on Z2 is started at a neighbour of zero, then
it reaches Euclidean distance L/

√
2 before hitting zero with probability at

least c/ logL for some constant c1 > 0. If it does, then the corresponding
random walk on the torus hits the set of ‘farthest’ sites, in the sense of
Lemma 4.1. By that lemma, if that happens, then the walk has probability
at least 2−7 of visiting at least half the torus before first hitting zero.

Say a big step that visits at least half of the vertices is an ‘alarm,’ as in
the proof of Lemma 4.3. Then the probability that any single big step is an
alarm is at least 2−7c/((1+λ) logL). If we start with dL2/4e chips awake,
the probability that they will all go to sleep without an alarm is less than

(1−2−7c/((1+λ) logL))L2/4 ≤ exp(−c1Ld/((1+λ) logL)),

where c1 = 2−9c. As before, if there is an alarm, then at least half the chips
are awake after that step, and it takes at least another Ld/4− 1 big steps
until the number of chips awake is back down to dLd/4e, so by the same
calculation as in the proof of Lemma 4.3, we get the lower bound we want:

E[T]≥ L4

8
exp(c1L2/((1+λ) logL)).

The upper bound for the time is similar. In this case, we will give names
to two special kinds of step.

• If the coin comes up tails, and the walk reaches Euclidean distance√
L from the origin, that’s a ‘major step.’

• If the coin comes up tails but the walk doesn’t reach that far, it’s a
‘minor step.’

Let p be the chance that a big step is major. Then p = (1− q)P[A√L],
which is at most 2C/(1+λ) logL, by the discussion before this theorem.

Suppose p≤ 1/2, which is true for all sufficiently large L. Then we can
use the inequality 1− p ≥ e−2p, so if we take L2 big steps, the probability
that there is no major step is (1− p)Ld ≥ exp(−4CL2/((1+λ) logL)).

If there are no major steps in the first L2 steps, then we have probability
at least 1/4 of falling asleep before 2L2 big steps have happened. To see
this, we analyze the number of minor steps.

Let X be the number of minor steps in the first L2 steps. Then X ∼
Bin(L2,1− p− q). By Chebyshev’s inequality, the probability that this is
less than 3L2(1−q) is at least 1/2.8 Each minor step stays within distance√

L of the origin, so it visits at most 9L ≥ (2
√

L+1)2 vertices. Therefore,
with probability at least 1/2, there are at most 27L3(1−q) chips awake after

8The mean of this random variable is µ = L2(1− p−q)≤ L2(1−q), and the variance
is L2(1− p− q)(p+ q) ≤ L2(1− q), so E[X −L2(1− q) ≥ 2L2(1− q)] ≤ 1/4. Actually,
the median of a binomial is between bµc and dµe, but we don’t need that much sharpness.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 23

the first L2 big steps, and they will all fall asleep immediately afterward with
probability (1−q)27L3(1−q), which is at least 1/2, because λ ≥ 9L3/2:

(1−q)27L3(1−q) ≥ e−27L3/λ (1+λ) ≥ e−1/3 ≥ 1
2
.

We’ve used the fact that 1− q ≥ e−1/λ from the proof of the last theorem.
So, the probability that all the chips fall asleep in 2L2 big steps is at least

1
4
(1− p)Ld

≥ 1
4

exp(−4CL2/((1+λ) logL).

As before, if we fail, we try again, and the expected number of big steps
until we succeed is at most (2L2)(4exp(4CL2/((1+λ) logL)).

The expected number of small steps is L2 times larger, again by the rea-
soning in the proof of Lemma 3.7. Therefore,

E[T]≤ 8L4 exp(4CL2/((1+λ) logL)),

which is the upper bound we want, with C1 = 4C. �

Because each big step may involve a q-lazy random walk on the torus,
the tail probabilities of the sleep time of the higher-dimensional process also
decay on the longer scale E[T]/(1−q), just as we saw in Theorem 3.10.

4.3. The proof of the half-visited lemma. We’re going to prove that, if
x,x′ are two vertices in the torus and d(x,x)′ = max{d(xi,x′i)} = bL/2c,
then a simple random walk started at x has a constant probability of visiting
more than half the torus when it hits x′, including x and x′.

We need two more lemmata first. Let p(x) be the chance that a walk
started at x visits at least Ld/2 vertices when it hits 0, including x and x′.

Lemma 4.5. The average value of p is at least 1/2.

Proof. By translation invariance and symmetry, p(x) is equal to the chance
that a walk from 0 has visited at least Ld/2 vertices before it reaches x.

Let’s start a simple random walk at 0, and run it forever. It almost cer-
tainly visits every site, and the first visits are in some order. Let P(x;n) be
the probability that the n-th site in the order is x. Then ∑x P(x;n) = 1, so

∑
x∈Td

p(x) = ∑
x∈Td

L

∑
n≥L/2

P(x;n) =
L

∑
n≥L/2

1 = L−dL/2e+1≥ L/2.

That means that the average of p is L−d
∑ p(x)≥ 1/2. �

We also want to know something about the average of p on smaller sets.
Let St be the set of vertices in the torus with first coordinate t ∈ Z/LZ, and
let the average of p on St be denoted by s(t) := L−d+1

∑x∈St p(x).

24 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

The torus is symmetric under reflection, so s(t) = s(−t) = s(L− t). The
next lemma proves that s is monotone on the set {0,1, . . . ,bL/2c}, and it’s
bounded below by 1/4 as long as t is far enough away from zero.

Lemma 4.6. s(0)≤ s(1)≤ ·· · ≤ s(bL/2c), and s(dL/3e)≥ 1/4.

Proof. The walk on the torus is nearest-neighbour, so if a walk starts at a
point on St with 0 < t ≤ L/2, it must hit either St−1 or SL−t+1 = S−t+1
before reaching the origin.

Choose a point uniformly from St , say x. Let it walk until it hits one of
the slabs St−1 or SL−t+1 at a point y, and then continue until it hits 0. The
walk starting at x is a subset of the walk starting at y, so E[p(x)]≥ E[p(y)].

By translation invariance, the last d− 1 coordinates of y are distributed
uniformly in Zd−1/LZd−1. The first coordinate is either t− 1 or L− t + 1,
and the value of p is the same at (y1,y2, . . . ,yd) and (L− y1,y2, . . . ,yd) by
reflection symmetry, so E[p(y)] = s(t − 1). Therefore, s(t) ≥ s(t − 1) for
0 < t ≤ L/2. This gives us the monotonicity claimed in the statement.

Let r be the value in the statement of the theorem, r := s(dL/3e). By
monotonicity and symmetry, s(t)≤ r when t ∈{−dL/3e, . . . ,dL/3e}. That’s
at least two-thirds of Z/LZ, and s(t)≤ 1 for the other values, so

1
2
≤ s(0)+ · · ·+ s(L−1)

L
≤ 2r

3
+

1
3
.

Therefore, r must be at least 1/4, which proves the lemma. �

Now we can prove the half-visited lemma. We recall the statement:

Lemma 4.1 (Half-visited lemma). If x is as far as possible from x′, then
with probability at least 2−d−4, a simple random walk from x and stopped
at x′ visits at least half the vertices of the torus.

Proof. The torus is transitive and symmetric under reflection and permu-
tation of coordinates, so it’s enough to prove the statement of the lemma
when x′ = 0 and the first coordinate of x is bL/2c.

Let Xt ,Yt be two random walks on Td coupled as follows. Each coordi-
nate i ∈ {1, . . . ,d} has an exponential clock going at rate 2. When the clock
for coordinate i rings:

• If (Xi)t 6≡ (Yi)t , then one chosen uniformly at random stays the same
and the other changes by ±1 uniformly.
• If (Xi)t ≡ (Yi)t , then the walks stay together. With probability 1

2 ,
they both change by±1, and with probability 1

2 , they stay the same.
Each of the walks by itself looks like a simple random walk in continuous
time with rate 1. When the walks start, X0 = x and Y0 is uniform on the
farthest slab SbL/2c.

CRITICAL SLEEP RATE FOR ARW ON THE CYCLE 25

Let T1 be the time that it takes for the walk on the first coordinate to hit
zero. It’s a continuous random variable with nonzero density on (0,∞), so
we can define t1/2 to be the unique time when P[T1 ≤ t] = 1/2.

If i = 2, . . . ,d, then at some point the two walks Xi and Yi will collide
with each other and lock together. Let Zi := Xi−Yi mod L. This is a simple
random walk on the cycle in continuous time, started at a uniform vertex on
the cycle, which runs twice as fast as the walk on the first coordinate.

Let T2, . . . ,Td be the times when Z2, . . . ,Zd first hit zero. These walks run
faster and their starting distribution is closer to the origin, so P[Ti ≤ t1/2]≥
1/2 for each coordinate. All the walks are independent, so

P[T2, . . . ,Td ≤ t1/2 ≤ T1] = P[T1 > t1/2]
d

∏
i=2

P[Ti ≤ t1/2]≥ 2−d.

The walk on the first coordinate starts at bL/2c, and at any fixed time t,
the probability that (X1)t = x is largest when x = bL/2c and decreases as
x gets farther away. Let A be the event that X1 ∈ {dL/3e, . . . ,L−dL/3e}.
Positions near the starting point are more likely, so P[A]≥ 1/4.

On the other hand, by the Markov property, once the walk hits zero, the
situation is reversed: Wt := (X1)t+T1 behaves like a random walk starting at
zero, and P[Wt = x] is larger near zero. Let B := {T1 ≤ t1/2}. Conditional
on that event, W and T1 are independent from each other, so

P[A | B] = P[(X1)t1/2 ∈ {bL/2c−m,bL/2c+m} | B]
= P[Wt1/2−T1 ∈ {bL/2c−m,bL/2c+m} | B]
≤ (2m+1)/L.

However, P[A] is the weighted average of P[A | B] and P[A | Bc], so P[A | Bc]
is at least (2m+1)/L, and by our choice of m, that’s at least 1/4. Therefore,

P[A∩Bc, and T2, . . . ,Td ≤ t1/2] = P[A | Bc] P[T2, . . . ,Td ≤ t1/2 ≤ T1]

≤ 2−d−2.

If this event occurs, then we haven’t hit zero by time t1/2, and all the
coordinates have locked, so Xt1/2 = Yt1/2 . What’s more, the first coordinate
of the walks is between dL/3e and L−dL/3e, so s((Y1)t1/2)≥ 1/4.

The joint distribution of (Y2, . . . ,Yd)t is uniform on Zd−1/LZd−1 at any
time t, so in particular it’s uniform at t1/2. Therefore,

p(x)≥ E[p(Yt1/2); A and Bc both occur, and T2, . . . ,Td ≤ t1/2]

≥ 2−d−2 min{s(dL/3e), . . . ,s(L−dL/3e)}
≥ 2−d−4.

This is the lower bound on p that we wanted. �

26 HANNAH CAIRNS, SHIRSHENDU GANGULY, LIONEL LEVINE

REFERENCES

[1] D.A. Levin, Y. Peres, and E.L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Soc.

[2] Per-Gunnar Martinsson and Gregory J. Rodin. Asymptotic expansions of lattice
green’s functions. Proceedings: Mathematical, Physical and Engineering Sciences,
458(2027):2609–2622, 2002.

[3] G. N. WATSON. THREE TRIPLE INTEGRALS. The Quarterly Journal of Mathe-
matics, os-10(1):266–276, 01 1939.

	1. Activated random walk
	2. ARW on the cycle with one chip per vertex
	2.1. Sorted configurations
	2.2. Big steps

	3. Lower and upper bounds on the total process
	3.1. A positive recurrence for the increments.
	3.2. A lower bound for the expected time
	3.3. An upper bound on the expected number of big steps
	3.4. The number of small steps until sleep

	4. Higher dimensions
	4.1. Bounds on the expected sleep time for dimension 3
	4.2. Bounds for d =2.
	4.3. The proof of the half-visited lemma

	References

