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Chapter 1

Introduction

Circle packings are a subject of recent interest. They are a window into a
discrete version of complex analysis. For example, given a circle packing
on a space, the graph distance can be thought of as a discrete version of a
conformal metric.

The starting point of the theory is the Koebe-Andreev-Thurston theo-
rem, which says that, if G is a planar triangulation, there is a unique circle
packing with tangency graph G in the unit circle, up to reflections and
Möbius transformations.

This allows one to take a wide variety of graphs and put a geometric
structure on them.

In 1987, Rodin and Sullivan [8] proved a result relating this ‘discrete’
complex analysis to the usual kind. They constructed a series of maps
between two circle packings in two regions, and showed that the sequence
converges to a conformal mapping as the circles in the packing become
smaller. The procedure that they used was suggested by William Thurston
in a talk in 1985, so we refer to it as ‘Thurston’s procedure.’

There is a natural temptation to generalize this procedure. One way to
do this is to use ellipses instead of circles in one of the two regions. The
result should no longer be conformal: it should have some special differential
structure depending on how we choose the shape of the ellipses.

We prove that this is indeed the case. We are not able to prove that the
maps converge, but we do show that any subsequential limit must have a
certain differential structure. It must solve the bar-Beltrami equation

fz̄ = ν(z)fz,

where ν is a complex-valued function that specifies the shape of the ellipses.
This is a variation on the usual Beltrami equation, fz̄ = µfz.

1.1 The structure of the essay

We will explain the structure of the essay and the function of each chapter.
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1.1. The structure of the essay

In Chapters 2 and 3, we explain how to modify Thurston’s procedure
to work on ellipses. In Chapter 4, we will talk about the image of a circle
under a linear map, and make an elementary approach to the bar-Beltrami
equation.

The maps in our procedure are not even approximately conformal, but
they are ‘K-quasiconformal’ for a certain constant K. We will define a
quasiconformal map, and recall some standard convergence theorems, and
then we will recall and slightly extend the rigidity theorem from Rodin and
Sullivan’s paper.

Finally, in Chapter 7, we will tie everything together and show that,
when we carry out our revision of Thurston’s procedure, any subsequential
limit solves the bar-Beltrami equation with the prescribed function ν.

In Chapter A, we find bounds on the Beltrami coefficient of a linear
map between two triangles. We then examine in detail the piecewise linear
maps that the procedure generates and make sure that there is a uniform
constant K so that all maps are K-quasiconformal.

For all of this to work, we need an ellipse packing theorem, for which we
go to Oded Schramm’s paper [9]. Unfortunately, the theorem in that paper
is not precisely suitable for this procedure. In Chapter B, we do the work to
prove that Schramm’s theorem implies a suitable ellipse packing theorem,
namely Theorem 3.1.1.

2



Chapter 2

Circle packing

2.1 The definition of a packing

A packing is a collection of closed sets Eα in the complex plane so that the
interiors, Eα \ ∂Eα, are pairwise disjoint. We allow the sets to touch each
other at the boundary, and if two sets do touch, we say they are tangent.

A packing is a circle packing if every set is a nondegenerate disc. It is an
ellipse packing if every set is a nondegenerate ellipse (including the interior).

The tangency graph of a packing is the graph with one vertex for each
set, and an edge between two vertices if and only if their corresponding sets
are tangent.

Let G be a planar graph with a distinguished outside face, and let X be
a domain. A packing of a graph G is a packing whose sets are labeled by
the vertices of G and whose tangency graph is G.

It is a packing in the domain X if every set Eα is contained in X, and
the sets on the outside face, and only those sets, intersect ∂X.

Here is an example of a circle packing in the unit disc:

Figure 2.1: A graph and a circle packing of it in the unit disc. The circles
on the boundary are tangent to the outside circle.

3



2.1. The definition of a packing

2.1.1 Circle and ellipse packings have planar embeddings

Every circle packing has a natural planar embedding. Vertices v are mapped
to the centre of the corresponding circle Ev, and the edges are mapped to
straight lines between the centres of tangent circles.

Ellipse packings also have planar embeddings, but there’s no completely
natural way to choose the lines. One way is to connect the centres e and f
of two ellipses which are tangent at a point t with the broken line etf .

The interior faces of the graph correspond to gaps between circles that
we call interstices. Our convention will be that interstices are open. In
Figure 2.1, interstices are coloured red. The carrier of a circle packing is
the union of every disc in the packing and every interstice in the packing.

Figure 2.2: The carrier of the circle packing in Figure 2.1.

The same definitions work for ellipse packings.
Suppose G is an oriented planar triangulation, and Ev : v ∈ V (G) is a

circle or ellipse packing of it.
Let F be any interior face of the graph. Then there are three vertices

on F : say a, b, c going around counterclockwise. The chain of three ellipses
Ea, Eb, Ec may go clockwise or counterclockwise around the interstice cor-
responding to F .1 If they go counterclockwise, we say that the packing
respects the orientation of that face.

We say that the packing is oriented if it respects the orientation of every
face. Two interstices whose faces share an edge must have compatible ori-
entations, so it’s enough for one of the interstices to be oriented.

1To give this a precise meaning, pick a Jordan curve γ ⊂ Ev1 ∪ Ev2 ∪ Ev3 which goes
through the three ellipses Ev1 , Ev2 , Ev3 in that order. Since γ is Jordan, the winding
number around any point in the interstice must be ±1. All such curves are homotopic to
each other through Ev1 ∪Ev2 ∪Ev3 , which means that that number is independent of the
choice of γ. If the winding number is +1, then we say the ellipses go counterclockwise.

4



2.2. Circle packings: existence and uniqueness

2.2 Circle packings: existence and uniqueness

Let G be a planar triangulation. Then there is a way to pack it in the unit
disc, and that way is unique up to reflections and Möbius transformations.

Koebe-Andreev-Thurston Theorem. Let G be a finite planar graph
with a distinguished ‘outside’ face. There exists a circle packing of G in the
unit disc. If G is oriented, the circle packing can be oriented too.

If G is also a triangulation, then there is a unique circle packing of G
in the unit disc, up to reflections and Möbius transformations that preserve
the circle and send the disc to itself.

Corollary. Let v be an interior vertex of G and w be another vertex.
There is a unique oriented packing so that Ev is centred at zero and Ew is
centred on the positive real line.

For an elementary proof, see Brightwell and Schneierman [7]. Neither of
the original proofs were elementary, however.

William Thurston sparked contemporary interest in this theorem with a
talk at Purdue University in 1985. He gave a proof in his book [2], Chap-
ter 13, Corollary 13.6.2, making it a corollary of Andreev’s theorem [3] on
hyperbolic reflection groups.

However, Reiner Kuhnau pointed out that it was originally proven by
Koebe [5] in 1936 as an application of his Kriegsnormierungstheorem or
circle domain theorem to ‘contact domains.’ See [4], page 141–142.

This history is taken from Kenneth Stephenson’s article [6].

We discuss the second part of the theorem a little. It is an exercise in
algebra to prove that any Möbius transformation which preserves the unit
circle and sends the disc to itself must look like

fa,θ(z) = eiθ
z − a
1− āz for a ∈ C, |a| < 1 and θ ∈ R.

Let G be a graph. Let Cv be a circle packing of G in the unit disc.
Then this packing cannot be unique. For example, f1/2,0(Cv) will be a circle
packing with the same tangency relations.

However, if G is a triangulation, then the theorem states that any two
packings Cv and Dv of the same graph are related by Dv = fa,θ(Cv).

5



2.3. How to approximate conformal homeomorphisms with circle packing

2.3 How to approximate conformal
homeomorphisms with circle packing

The procedure in this section is taken from Rodin and Sullivan [8], and it
was originally proposed by William Thurston in 1985 in a talk at Purdue
University.

The infinite regular hexagonal circle packing H is constructed as follows.
Start with a unit circle at the origin, and then add layers of unit circles
around the outside. Do this forever, and then stop. See Figure 2.3.

Figure 2.3: Generations of the regular hexagonal circle packing H.

The tangency graph is the infinite triangular lattice. We will call it T .
Then H is a circle packing of T in the plane. We will mention here a fact
that becomes very important later: this packing H is the only circle packing
of T in the plane, up to uniform scaling and rotation.

This fact is due to Rodin and Sullivan. We will discuss it in Chapter 6,
although for a proof we will refer the reader to Oded Schramm’s paper [15].

Thurston’s original procedure

Let X be a simply connected, bounded domain in R2. Let z0 and z1 be
points in its interior. Let δ be small enough that the circle of radius δ at z0

is contained in X.
For every positive integer n > 1/δ, perform the following tasks:

Step 1. Let Hn be a copy of H that is scaled down by a factor of n and
translated so that the origin moves to z0. Each circle has diameter 1/n and
is surrounded by six other circles, and one of the circles is centred at z0.

6



2.3. How to approximate conformal homeomorphisms with circle packing

Step 2. Let A′n = {C ∈ Hn : C ⊂ X}, a finite set. Let An be the
connected component of An that contains the circle at z0 in Hn.

Step 3. Pack the tangency graph of An in the unit circle using the
Koebe-Andreev-Thurston theorem, sending the circle centred at z0 to the
origin, and some circle adjacent to z1 to the positive real line.

We get a circle packing. Call it Bn. It has the same tangent graph as An,
but it’s packed in the unit disc.

Step 4. Let Gn and Hn be the embedded tangency graphs of An and Bn.
Let fn map the vertices of Gn to the vertices of Hn. Extend it linearly onto
every face of Gn.

Then fn is defined on every vertex, edge, and interior face of An, and it
is a homeomorphism on its domain of definition.

See Figure 2.4.

r2

r2

r1 r1

r3

r3

Figure 2.4: A piece of a piecewise linear map.

This will be a homeomorphism as long as the faces of Bn are indeed
disjoint. One needs to check that every face contains three sectors of three
circles and its own interstice, and nothing else.

Then fn is a piecewise linear homeomorphism defined on some closed set
inside the unit disc.

Lemma 2.3.1. The interior of the domain of definition of fn contains
every circle that isn’t on the boundary of the packing, and every interstice.

Here f is defined on every triangle in An. All triangles connect the
centres of adjacent circles.

Let c be a circle that isn’t on the boundary. Then there is a ring of
six other circles around it, and there are six triangles in An that connect
the central circle with its neighbours. Their union is a large hexagon which
contains c in its interior.

7



2.3. How to approximate conformal homeomorphisms with circle packing

All interstices are in the interior of a single triangle. (Look at the left
size of Figure 2.4. The triangle just grazes the side of the interstice, but
recall that interstices are open sets.)

This proves the result.

Lemma 2.3.2. Fix a compact set K ⊂ X. If n is large enough, the
domain of fn contains K in its interior.

Proof. Every circle in the domain packing has diameter d = 1/n.
Let Yn be the set of points z in X for which there is a broken line path γ
in the unit disc which goes from z0 to z, and where the distance d(γ,Ec) is
strictly greater than 2d. Then Yn is open and

⋃
Yn = K, so K is contained

in some Yn.
We now show that fn is defined on Yn. Fix z ∈ Yn. Choose a path of line

segments γ connecting z to z0 so that d(γ,Xc) > 2d. Let c1, . . . , cm ∈ Tn
be the set of (closed) circles that this path enters, in order.

Each pair cj , cj+1 is adjacent, because once the path has left a circle, it
enters an adjacent circle or an interstice. And when it leaves an interstice, it
can only enter an adjacent circle. Therefore, the list of circles is connected.

By the bound on the distance, if γ is in some circle cj , then d(cj , X
c) is

greater than d. Therefore, we can fit another layer of circles around cj that
are still contained in X, so cj is an interior circle.

Therefore, the whole path is inside interior circles or in interstices. And z
is in the path, so z is in the interior of the domain of definition of fn, by
Lemma 1.1.1.

In view of Lemma 2.3.2, it makes sense to talk about the convergence of
the functions fn on any compact set in X. In Chapter 3 we will prove the
surprising fact that fn do in fact converge to a conformal limit.

This is old news. What we want to talk about is ellipse packing. In
order to do this, we have to make some small modifications to Thurston’s
procedure.

8



Chapter 3

Ellipse packing

We want to replace the circle packing in Thurston’s original procedure by
an ellipse packing, where we get to choose the shape of each ellipse.

3.1 Revising Thurston’s procedure to work with
ellipses

We say that two ellipses E,F have the same ‘shape’ if one is a uniform
scaling and translation of the other. That is, E = aF + c for some a > 0
and c ∈ C.

We can obtain an ellipse packing theorem similar to the Koebe-Andreev-
Thurston theorem from Oded Schramm’s blunt packing theorem [9].

Theorem 3.1.1. (after Schramm) Let T be an oriented planar triangu-
lation with an outside edge. For every vertex, let Ev be some fixed ellipse.
Let t be a vertex that is not on the boundary, and let u be some other vertex.

There is an oriented packing of T in the unit disc so that Fv has the
same shape as Ev, and the centre of Et is zero and the centre of Eu is on
the positive real line.

Schramm’s theorem is much more general than this, and handles objects
that are not necessarily even convex. On the other hand, the normalization
is different: we are not allowed to select an interior circle and put it at the
origin.

We will discuss how to get from his theorem to this one in Appendix B.

However, the construction of the piecewise linear map in Step 4 doesn’t
work for ellipses. The problem is that a line between the centre of two
ellipses may no longer go through the tangent point.

This leads to the kind of thing on the left in Figure 3.1. The two image
faces overlap each other, so the corresponding piecewise linear map is not
injective.

We solve this problem by breaking every line in half and moving the
midpoints to tangent points, as on the right in the figure.

9



3.1. Revising Thurston’s procedure to work with ellipses

Figure 3.1: The problem with the simple way, and its solution

Having made those two changes, we get the following revised procedure.

3.1.1 Thurston’s revised procedure

Let X be a simply connected, bounded domain in R2. Let z0 and z1 be
points in its interior. Let ν : X → C be a continuous ‘shape field.’

The shape of an ellipse is determined by the ratio M between its major
and minor axes, and the angle θ of the major axis to the real line. We say
that an ellipse E has shape coefficient ν if ν = e2iθ(M − 1)/(M + 1).

We will elaborate on the reason for this choice in Section 4.3. It turns
out that ν uniquely determines the ellipse, and the linear map z + νz̄ sends
circles to ellipses of shape ν.

The steps in the revised procedure are as follows:

Step 1 and 2 of the revised procedure are the same. They give us a
connected circle packing An in E.

Step 3e. Take the tangency graph Gn of An and pack it in the unit
circle using the ellipse packing theorem on the previous page, Theorem 3.1.1.

Choose the shapes of the image ellipses depending on the centres of the
corresponding circles in An. The shape of the ellipse at v is ν(zv).

We get an ellipse packing, En.

Step 4e. Let fn be the piecewise linear map which sends vertices of A′n
to vertices of Bn and which sends tangent points in A′n to tangent points
in Bn. It can’t be linear on every face, but we can make it piecewise linear
on every face, broken up as in Figure 3.2.

This will be a homeomorphism. One can check that every one of the
image triangles is either part of one of the ellipses, or covers three sectors
of an ellipse and an interstice. One can also check that the interiors don’t

10



3.1. Revising Thurston’s procedure to work with ellipses

overlap. (For example, check that the interstice doesn’t escape the triangle
that connects its cusps, and that the angle between successive tangent points
around the inside of the ellipse is less than 180◦.)

r2

r2

r1 r1

r3

r3

Figure 3.2: The piecewise linear maps in the revised procedure.

Whether we use the original or revised version of Thurston’s procedure,
the function fn is defined on every interior face of the embedded graph, and
Lemma 2.3.2 goes through as before.

3.1.2 Conclusion

We have a sequence of piecewise linear maps fn, which are eventually well-
defined on every compact set in X. The individual linear maps are deter-
mined by the sizes and positions of the image circles.

We now wish to study the limits of these maps.

11



Chapter 4

Oriented linear maps

4.1 A way of writing oriented linear maps

Recall that the maps fn from Thurston’s procedure are pieced together out
of oriented linear maps. Our first step is a helpful lemma that characterises
this type of map.

Lemma 4.1.1. An oriented linear map can be written as f(z) = α(z+µz̄)
with α, µ ∈ C and α 6= 0 and |µ| < 1, and any map that can be written like
that is an oriented linear map.

Let f : R2 → R2, f(x, y) = (ax+ by, cx+dy) be an arbitrary linear map.
This map is oriented when ad− bc > 0. Write

f(z) = (a+ ic)

(
z + z̄

2

)
+ (b+ id)

(
z − z̄

2i

)
=
a+ ic− ib+ d

2︸ ︷︷ ︸
α

(
z +

a+ ic+ ib− d
a+ ic− ib+ d︸ ︷︷ ︸

µ

z̄

)
. (4.1)

This is always possible if the Jacobian is positive, because if a+ic−ib+d
is zero then ad− bc = −a2 − b2 ≤ 0.

We can therefore write any oriented linear map in the form α(z + µz̄).
This proves one direction.

Consider a general map f(z) = α(z+ µz̄) with α 6= 0. Let a, b, c, d be as
above. They are well-defined: for example, we have c = Im(α+ µα). Then

1− |µ|2 = 1− (a− d)2 + (c+ b)2

(a+ d)2 + (c− b)2
=

4(ad− bc)
(a+ d)2 + (c− b)2

,

The denominator is always positive. (Otherwise α = 0.) So the sign of
the Jacobian is the same as the sign of 1− |µ|2.

Therefore, a linear map f(z) = α(z + µz̄) with α 6= 0 is oriented if and
only if |µ| < 1.

12



4.2. The image of a circle under a linear map

4.2 The image of a circle under a linear map

We have a convenient way of writing linear maps. We now ask what the
image of a circle is under such a map.

The answer turns out to be reasonably nice. Recall that the ‘distortion’
of an ellipse is the ratio between the major and minor axes. Then:

Theorem 4.2.1. An oriented linear map f : z 7→ α(z+µz̄) takes circles
to ellipses with distortion (1 + |µ|)/(1− |µ|). The angle of the major axis to
the real line is argα+ 1

2 argµ.

Here 1
2 argµ only makes sense up to multiples of π, but that is all right,

because the angle of the major axis is only determined modulo π.

Proof. It is enough to look at what happens to the unit circle. The
map is invertible, so it takes the circle to some ellipse. All we need to do is
find the major and minor axes.

Suppose that the circle is centred at zero. The centre of the image ellipse
will also be zero.

The distance from the centre to a point on the edge of the image is

|f(eiθ)| = |α||eiθ + µe−iθ| = |α||1 + µe−2iθ|.

The major axis must be twice the maximum of this, namely 2|α||1 + µ|.
The minor axis is twice the minimum, 2|α||1 − µ|. The distortion of the
image ellipse is the ratio, which is (1 + |µ|)/(1− |µ|).

The maximum occurs at θ = 1
2 argµ. The angle of the image point for

this value of θ is

arg f(eiθ) = arg
(
α(eiθ + µe−iθ)

)
= argα+ arg θ = argα+ 1

2 argµ.

This is the angle of a point on the image ellipse which is as far as possible
from the origin. That is, it is the angle of the major axis.

4.3 The bar-Beltrami coefficient

The theorem in the previous section is not terribly ugly, but it would be
nice if there were a single number that characterized the shape of the image
ellipse. And there is!

Let ν = fz̄/fz = µα/ᾱ. This is called the bar-Beltrami coefficient, by
analogy with the usual Beltrami coefficient fz̄/fz = µ.

We have the following corollary:

13



4.4. Conclusion

Corollary 4.3.1. Let f be an oriented linear map. Suppose ν = fz̄/fz.
Then f takes circles to ellipses with distortion (1 + |ν|)/(1− |ν|) and major
axis angle 1

2 arg ν.

Proof. Let f(z) = α(z + µz̄) as in Lemma 4.1.1. Then

ν = fz̄/fz = µα/ᾱ.

So |ν| = |µ|. By the previous lemma, the distortion of image ellipses is

(1 + |µ|)/(1− |µ|) = (1 + |ν|)/(1− |ν|).

And, because argα/ᾱ = 2 argα,

1

2
arg ν =

1

2
(argµ+ 2 argα) =

1

2
argµ+ argα,

which is the major axis angle from Lemma 4.2.1. This proves the result.

Observation. If the distortion is d and the major axis angle is θ, then ν
is uniquely determined: ν = e2iθ(d− 1)/(d+ 1).

Corollary 4.3.2. Let f be an oriented affine linear map. The following
are equivalent:

• f takes circles to ellipses with distortion at most K.

• |fz̄/fz| ≤ (K − 1)/(K + 1).

Proof. Write f(z) = f(0)+α(z+µz̄). By Theorem 4.2.1, the distortion
of the image ellipses is (1 + |µ|)/(1− |µ|). A little algebra shows

1 + |µ|
1− |µ| ≤ K ⇐⇒ |µ| ≤ K − 1

K + 1
.

Here µ = fz̄/fz. This proves the result.

4.4 Conclusion

Suppose f is a piecewise linear homeomorphism so that each map takes
circles to circles. That is, f takes circles to ellipses with distortion at most 1.

By Corollary 4.3.2, we must have fz̄ = 0 at every point where the func-
tion is linear, so every piece is analytic. By the removability of lines, the
whole function f has to be conformal (and therefore linear).

14



4.4. Conclusion

What if the maps in f take circles to ellipses of bounded distortion ≤ K?
In that case, the piecewise map is in a class of maps called K-quasiconformal.

This is a natural class to study for our problem, and it turns out that the
piecewise linear maps in Thurston’s procedure are indeed all K-quasicon-
formal for a certain large K.

15



Chapter 5

Quasiconformal maps

In the last section, we showed that an oriented linear map α(z+µz̄) distorts
a circle in a certain way depending only on. We present an analytic definition
of a quasiconformal map, in terms of the distortion.

5.1 The first definition of a quasiconformal map

Definition. Let X be a domain. Let f : X → C be a homeomorphism
onto its image f(C). Then f is K-quasiconformal on E if it satisfies the
following three conditions.

1) The image f(E) is open in C.

2) At almost every point z0 ∈ E, the function is once differentiable, and
the first-order approximation takes circles to nondegenerate ellipses
with distortion at most K.

3) The derivatives fx and fy exist almost everywhere on E.

For almost every fixed x, if [a, b] is an interval so that {x}× [a, b] ⊂ E,
then the integral of fy(x, y) from y = a to y = b is f(x, b)− f(x, a).

For almost every fixed y, if [a, b] is an interval so that [a, b]×{y} ⊂ E,
then the integral of fx(x, y) from x = a to x = b is f(b, y)− f(a, y).

These requirements together are called absolute continuity on lines.

16



5.2. Second definition of a quasiconformal map

This definition has a few logical redundancies, but that’s alright.2 Notice
that the third condition is always satisfied for a piecewise linear map.

Lemma 5.1.1. A K-quasiconformal function on a domain E is also
K-quasiconformal on every subdomain.

Proof. Consider a subdomain A ⊆ E. It is clear that properties 2) and
3) are still true on A, and 1) is true because f(A) is open in f(E), which is
open in C.

5.2 Second definition of a quasiconformal map

Definition A′. Let f : E → C be a homeomorphism onto its image f(E).
Then f is K-quasiconformal if there is a measurable function µ : E → C
with ||µ||∞ ≤ (K − 1)/(K + 1) so that

1) the image of E under f is open, and

2) fz̄ = µ(z)fz almost everywhere in E, and

3) f is absolutely continuous on lines.

The equivalence comes out of Corollary 4.3.2. This function µ is called
the Beltrami coefficient of f . Since fz 6= 0 except on a null set, µ is uniquely
defined up to a null set.

5.3 Convergence of quasiconformal maps

Quasiconformal maps share many nice properties with conformal maps. For
example, they are a normal family.

We quote several results.

Theorem 5.3.1. Let X be a domain in C, and a 6= b be complex num-
bers. Fix K < ∞. The family of all K-quasiconformal functions whose
image does not contain a or b is equicontinuous around every point in X.

2The well-known ‘invariance of domain’ theorem from topology guarantees that the
image is open in C. See for example Bredon’s Topology and Geometry, [10], Corollary
19.9.

The Gehring-Lehto theorem says that an open map which satisfies the second condition
is differentiable almost everywhere on E. So the first-order approximation is automatically
valid a.e. Look at Lehto and Virtanen’s Theorem III.3.1 in [11], or page 17, Lemma 1 in
Ahlfors’s book Lectures on Quasiconformal Mappings [12].
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5.3. Convergence of quasiconformal maps

Proof. See Lehto and Virtanen [11], page 69, or Astala, Iwaniec and
Martin [13], page 182. Compare to Montel’s theorem.

Corollary 5.3.2. If fn : X → C is a sequence of K-quasiconformal
functions, and there is a uniform bound |fn| ≤ R, then there is a subse-
quence fnj that converges uniformly on compact sets to some limit f .

Proof. We can let a, b be any two points outside the disc of radius R.
Then fn are equicontinuous, and it is well-known that equicontinuous fam-
ilies are normal.

Theorem 5.3.3. Let fn : X → C be K-quasiconformal functions that
converge to f uniformly on compact sets. Then f is K-quasiconformal or
constant.

Proof. See Lehto and Virtanen [11], page 74. Ahlfors [12] covers more
or less this topic on page 32–33 (the fact that K-quasiconformal mappings
with a fixed normalization are sequentially compact).

Not only that, but if the Beltrami coefficients µn of the sequence fn
converge pointwise to a limit µ, then the limit function f will have the
Beltrami coefficient µ.

Theorem 5.3.4. Suppose the K-quasiconformal functions fn : X → C
with Beltrami coefficients µn converge uniformly on compact sets to a K-
quasiconformal limit f with Beltrami coefficient ν.

If µn converges pointwise almost everywhere to a limit µ, then ν = µ.

Proof. See Lehto and Virtanen [11], page 187. Alternatively, look at
the proof of Lemma 5.3.5 in [13], page 171: just drop the assumption about
normalization and throw away the last three sentences of the proof.

5.3.1 Convergence of functions not defined everywhere

Let X be a domain. We will say that a sequence of subsets Xn ⊂ X ‘fills’ X
if every compact set in X is eventually contained in Xn.

Thurston’s procedure gives us functions fn that are defined on a series
of subsets of a domain X, and Lemma 2.3.2 tells us that the domains of
definition of fn fill X.

We will later prove that:

(i) fn is K-quasiconformal for a bounded K independent of n.

(ii) The images fn(Xn) converge to the unit disc in the sense above.
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5.3. Convergence of quasiconformal maps

(See Theorems 6.1.1 and 6.2.1.)
The first fact tells us that we can apply Theorem 5.3.1 to a sequence

of compact sets Kn which fill X, and then use diagonalization to get a
subsequence which converges uniformly on every set.

Theorem 5.3.3 tells us that the limit of that subsequence is either a K-
quasiconformal map into the unit disc, or a constant.

With the second fact, we can show that the image of that limit is the
whole unit disc, using the following theorem:

Theorem 5.3.5. Let Xn be domains that converge to X. Let fn be K-
quasiconformal maps from the domain Xn to the unit disc, and suppose
that fn(z0) = 0.

If the sequence of sets fn(Xn) fills the unit disc, then the subsequential
limits of fn are homeomorphisms onto the unit disc.

Proof. Without loss of generality, let fn converge to some limit f
uniformly on compact sets in X.

By definition, fn is a homeomorphism onto its open image. Let gn be the
inverse of fn. It isK-quasiconformal, because the inverse of a quasiconformal
map is also quasiconformal with the same modulus.3

The domains of the functions fn and gn converge to the region X and to
the unit disc. By Corollary 5.3.2, there is a subsequence gnj which converges
uniformly on compact sets in the unit disc. Then g = lim gn is defined on
the unit disc.

Fix |z| < 1. Then gnj (z)→ g(z), which is in the open set X.4 Let F be
a compact set in D containing a neighbourhood of g(z). Then f converges
uniformly on F , so f(g(z)) = limj fnj (gnj (z)) = z.

Similarly, for z ∈ X, g(f(z)) = z.
We have proven that f : X → {|z| < 1} has an inverse g : {|z| < 1} → X,

and it is therefore a homeomorphism.

3See Chapter II of Ahlfors [12] or page 17 and 168 of Lehto and Virtanen [11].
4In principle, g(z) could be in the boundary of X. We prove not. If g is a constant

map, then g(z) = g(0) = lim gn(0) = z0 is not on the boundary.
If it is not constant, then it is a homeomorphism onto an open image. Let N be a small

disc around z whose closure is contained in the unit disc. Then gn converges uniformly to
g. Let ∂N be the topological boundary of N . There is a disc around g(z) which contains
no point of g(∂N). If n is large enough, there is a disc that contains no point of gn(∂N)
but does contain g(z) and gn(z).

If g(z) is not contained in gn(N), the line between g(z) and gn(z) has to have a boundary
point ∂gn(N) = gn(∂N) in it. We know that it doesn’t, so g(z) is contained in gn(N) ⊆ X
and is not on the boundary. This argument is taken from Lehto and Virtanen [11], page 76.
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Chapter 6

The rigidity of circles and
ellipses

Circle packings have a variety of rigidity properties, and they carry over
readily to ellipse packings. We will present some of them.

In every theorem below, we will assume that no ellipse has distortion
more than K.

6.1 The Ring Lemma

This argument is essentially taken from Rodin and Sullivan [8]. However,
we have added a painfully detailed geometric justification, just to make sure
that the lemma works on ellipses also. It has been hidden in small text, and
we advise the reader to ignore it.

Lemma 6.1.1. (Ring Lemma) Suppose E is an ellipse surrounded by a
ring of tangent ellipses E1, . . . , En. Then there is a constant c(n,K) > 0
independent of the choice of ellipses so that

min
j

diam(Ej)

diam(E)
≥ c(n,K).

Proof. We suppose that the central ellipse has diameter 1. We must
show that the diameter of the smallest ellipse is bounded below.

The ring of ellipses has to make a loop around the central ellipse, so the
sum diam(E1) + · · · + diam(En) is at least 1. Therefore, the largest ellipse
in the chain must have diameter at least 1/n.

We now proceed by induction. Suppose that there is a lower bound on
the diameter of Ej . Let t be the tangent point of Ej and E. Rotate the
drawing so that the tangent is horizontal, and move t to the origin. If we
zoom in far enough, we will get something like this:

Figure 6.1: Closeup on the tangent point of two ellipses.
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6.1. The Ring Lemma

We claim that if Ej+1 is very small, then it must be close to the tangent
point t. Here is a naive argument. It is tangent to both ellipses Ej and E,
so it contains points in both of them. Those points must be close together.
The only place Ej and E get close is at the origin. Therefore Ej+1 must be
near the origin.

The reader may be wondering if this bound depends somehow on the
precise choice of ellipses. We refer them to this tiny lemma:

Observation. The curves are approximate parabolas. If a and b
are the curvatures of Ej and E at t, then the two curves are y ∼ 1

2
ax2

and y ∼ − 1
2
bx2, respectively.

Here ‘∼’ means that the two sides are asymptotic as x, y → 0.

Tiny Lemma 6.1.2. Let dj = diam(Ej). Then the distance of the
centre of Ej to t is asymptotically less than

√
(a+ b)/2×

√
dj as dj → 0.

Proof. Let (x1, y1) be the point Ej∩Ej−1, and (x2, y2) be the other
tangent point Ej ∩ E. They are both in the ellipse Ej , so the distance
between the two points is no greater than dj . But

dj ≥ |y1 − y2| & 1
2
ax21 + 1

2
bx22 ≥ 1

2
(a+ b) max(x1, x2)2.

The distance from the centre of E to the tangent point t is asymptotically
no greater than √

x21 + y21 + dj ≤ x1 + y1 + dj

∼ x1
∼
√

(a+ b)/2×
√
dj .

Here y1 ∼ 1
2
ax21 and dj are small compared to

√
dj as dj → 0.

So Ej is close to the origin. And if one ellipse is small and close to the
origin, the ellipse touching it must be small and close to the origin too, in
order to fit into the dotted region.

This forces all the other ellipses Ej+1, . . . , En to be small. But this is
impossible, because the ellipses have to make a ring around E! If they are
all small, they cannot complete the loop.

Therefore, the diameter of Ej is bounded below. We will take a break
to justify these vague remarks in excruciating detail, and then finish the
proof.

Tiny Theorem 6.1.3. Suppose that we are in the situation in Fig-
ure 6.1. Let d be small. Let E be an ellipse contained in the dotted area
and in the ball {|x| ≤ d}. Let F be an ellipse tangent to it, also con-
tained in the dotted area. Then F has diameter at most Cd2 for some
constant C, where C depends only on the diameters of the large ellipses
and on the ellipse distortion.

What do we mean, “let d be small?” Let h(ξ) be the distance between
the top and bottom curves on the line x = ξ. Then h(ξ) ∼ 1

2
(a + b)ξ2,
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6.1. The Ring Lemma

where a, b are the curvatures of the two large ellipses as in the tiny lemma.
This is an asymptotic equality. We assume that d is small enough that the
weaker exact inequality h(ξ) ≤ (a+ b)ξ2 is actually true for 0 ≤ ξ ≤ 2d.

We also assume, a little mysteriously, that d < 1/4(a + b). Both
these bounds are uniform in the diameters of the ellipses and in their
distortion.

Proof. Let x be the tangent point between F and E. We can
inscribe a circle of diameter diam(F )/K inside F so that the circle also
contains x, as in the footnote on page 37.

Naturally, we can inscribe a circle of smaller diameter too. Let δ
be an arbitrary number less than diam(F )/K. We also require, again a
little mysteriously, that δ should be less than min{d, 1/(a+ b)}. Inscribe
a circle of diameter δ in F containing x. Then there is room for the line
of length δ connecting the top and bottom of the circle.

Let the centre of the circle be z = ξ + iη. Remember δ ≤ d. Then
ξ ≤ 2d, so our upper bound on the radius is valid: δ ≤ h(ξ) ≤ (a+ b)ξ2.

The circle has radius 1
2
δ, and x is contained in it. But x is also

contained in E. So

d ≥ |x|

≥
√
ξ2 + η2 − 1

2
δ

≥ ξ − 1

2
δ.

≥ 1√
a+ b

√
δ − 1

2
δ

≥ 1

2
√
a+ b

√
δ.

(Remember we insisted that δ be less than 1/(a+ b).)
Solving for δ, we will get δ ≤ 4(a + b)d2. But δ was an arbitrary

number less than a certain upper bound. So that upper bound must be
less than 4(a+ b)d2 also:

min{diam(F )/K, d, 1/(a+ b)} ≤ 4(a+ b)d2,

but the second two terms in the minimum are guaranteed to be larger
than 4(a+ b)d2, because of how we chose d.

We must therefore have diam(F )/K ≤ 4(a + b)d2, or diam(F ) ≤
4K(a+ b)d2. This proves the tiny theorem with C = 4K(a+ b).

Suppose we have a lower bound on the diameter of Ej−1, and we use
induction. We know the base case already: diam(E1) ≥ 1/n.

Let d be ‘small’ as above, and also let d ≤ 1/2Cn. Suppose the
original ellipse Ej was closer than d/2 to the tangent point. This is
certainly less than d, so, by the tiny theorem, the diameter of Ej+1 can
be at most Cd2.

That means that the distance of Ej+1 to the tangent point is no
greater than d

2
+Cd2 ≤ d

2
+ d

2n
. This is also less than d, so we repeat the
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6.2. Ellipse sizes must go to zero

argument. The distance of the ellipse Ej+k to the tangent point can be
at most d

2
+ d

2n
k. After n− 1 steps, the distance can be at most d.

But after n − j + 1 steps, we’ve come back around to the large el-
lipse Ej−1! It can hardly be wedged in to the right of itself, so d cannot
be ‘small’ as above.

This gives us a lower bound on the size of an ellipse, and that lower
bound depends only on the sizes of the large ellipses and on the distortion.
We had a lower bound on the diameter of Ej−1

This proves that no ellipse can be much smaller than the one before
it, and that gives us a lower bound on the size of every ellipse E1, . . . , En.
The exact lower bound doesn’t matter and will be left up to the reader’s
imagination.

6.2 Ellipse sizes must go to zero

This argument is identical to the one in Rodin and Sullivan.

Lemma 6.2.1. (Length-Area Lemma) Suppose the unit circle contains n
chains of disjoint ellipses with m1, . . . ,mn ellipses.

Let the diameters of the ellipses in the j-th chain be called dj1, . . . , djmj .
Let `j =

∑
i dji. Then we must have

∑
j

`2j
nj
≤ 4K.

Proof. Let E be an ellipse of diameter d. A circle of diameter d has
area π(d/2)2, so the area of the ellipse is at least πd2/4K.

Let the total area of the ellipses in the j-th chain be Aj . Then Aj is at
least

∑
i πd

2
ji/4K. By the Cauchy-Schwartz inequality,

`2j =
(∑

dji
)2 ≤∑ d2

ji ×
∑

1 =

(
4K

π
Aj

)
×mj .

Therefore, `2j/mj ≤ (4K/π)Aj . But the sum of the areas Aj can be at
most π, which means∑

`2j/mj ≤ (4K/π)
∑

Aj ≤ 4K.

This proves the result.

Corollary 6.2.2. The size of all the image ellipses in Thurston’s re-
vised procedure converge uniformly to zero.

23



6.2. Ellipse sizes must go to zero

Proof. We are looking at the packing Bn. This is a packing of a certain
subset Gn of the regular hexagonal graph in the unit circle.

Let D be the graph distance from the vertex v0 to the boundary of Gn.
Then D goes to infinity as n does.

Suppose that the ellipse at vertex v has diameter d. There are two
possibilities, and in both cases d has to be small:

• The graph distance of the vertex to the boundary is more than D/2. In
this case, it is surrounded by D/2 rings containing 6, 12, 18, . . . circles
successively. All these rings have length at least d.

Therefore,

d2

6
×
( D∑
j=1

1

j

)
=

D∑
j=1

d2

6j
≤

D∑
j=1

`2j
6j
≤ 4K.

The sum in parentheses is the harmonic series, which goes to infinity
as D becomes large. The other factor must become small:

d ≤

√√√√24K

( D∑
j=1

1

j

)−1

goes to zero as n goes to infinity.

• The graph distance of the vertex to z0 is more than D/2. Then the
vertex is surrounded by D/2 chains as above. Some of the chains
hit the boundary this time before completing the loop, so they aren’t
rings, but each chain contains at most 6, 12, . . . circles.

If the chains are loops, their total length is at least d. If not, they
separate v and v0, and connect two points on the boundary of the unit
circle, as in Figure 6.2. One can see that the chains still have to have
total length at least d. As above, this implies that d is small.

v

v0

Figure 6.2: A chain around a large boundary circle. The chain has to
separate v and v0, so going around the other way doesn’t help.
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6.3. Packing the infinite triangular lattice T

6.3 Packing the infinite triangular lattice T

Recall that H is the infinite regular hexagonal circle packing, in which every
circle is surrounded by six other circles of the same size. It is a circle packing
of the infinite triangular lattice, T .

Say we try to pack this infinite graph in some other way. If every circle
is the same size, we will just get a rotation and scaling of the hexagonal
circle packing.

Can we pack it so that two adjacent circles are different sizes? Surpris-
ingly, this is not possible:

Rigidity Theorem. If a circle packing has graph T , all the circles are
the same size.

There are several different proofs of this. The first published one seems
to be in the appendix of Rodin and Sullivan’s [8], relying on a difficult paper
by Sullivan [14]. A later elementary proof was provided by Schramm [15].
We will not prove it here.

6.3.1 Circles are nearly the same size at the centre of a
large neighbourhood that looks like T

The Rigidity Lemma has a finitary version. Again, this is taken directly
from Rodin and Sullivan.

Finite Rigidity Theorem 6.3.1. (Version 1) Let Tn be a graph neigh-
bourhood of size n in T , centred at zero. Let E be any circle packing of Tn
in the plane which takes zero to the unit disc.

Fix m. Let n > m. If n is large, the diameters of the circles in the
subgraph Tm are nearly 1.

Proof. Consider the circles in a neighbourhood of size m around zero.
If n > m, they are all surrounded by a ring of circles, so the Ring Lemma
applies to them. But the circle at zero is the unit circle. So by repeated
application of the Ring Lemma, the diameter of every other circle in that
neighbourhood is bounded above and below.

This means that the set of possible positions and diameters of the cir-
cles is compact. We claim that the diameters of the circles in every fixed
neighbourhood Tm converge to one as n→∞.

Suppose not. Then we may pick a subsequence of circle packings Ejm so
that the diameters converge to something else on Tm. Use diagonalization
to get a subsequence of circle packings En so that the diameters converge
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6.4. Conclusion

on every neighbourhood Tm. The limit will be a circle packing of T so that
the circles are not all the same size, which is impossible.

6.3.2 Even if they are not quite circles

Finite Rigidity Theorem 6.3.2. (Version 2) Let Tn be a graph neigh-
bourhood of size n in T , centred at zero. Let E be any ellipse packing of Tn
in the plane which takes zero to the unit disc.

Fix m and K > 1. Also fix an interval a < 1 < b.
There exists N so that, whenever n ≥ N and E is an ellipse packing

of Tn and no ellipse in E has distortion more than K, the diameters of the
ellipses in the subgraph Tm are in the interval [a, b].

Proof. We proceed by contradiction as before. Suppose that the state-
ment of the theorem is not true. Then there is a sequence of ellipse pack-
ings E` of Tn` so that the maximum distortion converges to 1, but the
diameters do not converge to 1 in the neighbourhood Tm.

The Ring Lemma also holds for ellipses, so the fact about compactness
is still true. So there exists a subsequence of those packings which converges
on every neighbourhood Tm, and some circle in the limit has a diameter
different from 1. The limit will have K = 1, so it is a circle packing of H
with two circles of different diameters, which is impossible.

6.4 Conclusion

We have proven several rigidity results about ellipse packings, and we may
apply them to our procedure.

Theorem 6.1.1 shows that if we have two adjacent ellipses in the interior
the an ellipse packing, then the ratio of their diameters is bounded above
and below. Theorem 6.2.1 shows that the maximum sizes of the ellipses in
the image packing go to zero — even the boundary ellipses.

Finally, Theorem 6.3.2 tells us that, if the graph of a packing looks like T
in a large neighbourhood of a point, and the ellipses in the packing have small
distortion, then the triangles in the packing are nearly equilateral.

We will exploit all three of these results in the next section, where
we finally prove that the maps from Thurston’s procedure, fn, are K-
quasiconformal maps that converge to a limit.
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Chapter 7

Conclusion: Thurston’s
procedure

7.1 The bar-Beltrami equation

We have already met the Beltrami equation in Section 5.2. It is the differ-
ential equation fz̄ = µfz, where µ is some function of z with |µ| < 1.

Suppose fn is a sequence of K-quasiconformal mappings that converge
uniformly on compact sets to f . We know from Theorem 5.3.4 that if the
Beltrami coefficients µn converge pointwise, the coefficient of the limit will
be the limit of the coefficients (almost everywhere).

We now introduce the bar-Beltrami equation:

fz̄ = νfz

where ν is some function with sup |ν| < 1. The difference between this and
the Beltrami equation is that there is now a bar on fz.

The bar-Beltrami coefficient, which we have already seen in Corollary 4.3.1,
is that number ν = fz̄/fz.

7.1.1 Bar-Beltrami and Beltrami

There is a close relation between the bar-Beltrami equation and the original
equation.

Lemma 7.1.1. Suppose f(z) has bar-Beltrami coefficient ν at z0. Let g
be the inverse of f . Then the Beltrami coefficient of g at f(z0) is −ν.

Proof. Suppose f is linear. A linear map with bar-Beltrami coeffi-
cient ν must look like w = αz + ᾱνz̄ for some constant α > 0. If we solve
for z, we will get

w − νw̄ = α(1− |ν|2)z.

So z = (w−νw̄)/(α(1−|ν|2)). This has Beltrami coefficient zw̄/zw = −ν.
That proves the result for linear maps. But it is also true for nonlinear maps,
because the result only depends on the derivatives of f, g at a point.
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7.2. The bar-Beltrami coefficient of fn

7.2 The bar-Beltrami coefficient of fn

In this section, we prove the following theorem about the maps fn from
Thurston’s procedure:

Theorem 7.2.1. The bar-Beltrami coefficient of the maps fn converges
to ν almost everywhere.

If we ignore the set of measure zero where the coefficients do not exist,
this convergence will be uniform on compact sets in X.

We will begin by sketching the proof.

Sketch of proof. The idea here is simple. The shape field is contin-
uous, so neighbouring ellipses have about the same shape. We can apply a
linear map, say g, to turn them all back into approximate circles.

Then, by the Finite Rigidity Theorem 6.3.2, all the circles will have
about the same size, so the image triangles are all approximately equilateral.
Then g ◦ fn will be close to conformal, and when we apply g−1 to it, we get

fn = g−1 ◦ g ◦ fn

which will have about the same bar-Beltrami coefficient as g−1. And g−1

turns circles into ellipses of shape ν, so it has bar-Beltrami coefficient ν.

Proof. We recall that we have a graph Gn and two circle packings An
and Bn, where An is part of the infinite regular hexagonal circle packing,
and Bn is some ellipse packing.

The function fn is differentiable except on a set of measure zero. Let x
be a point in the domain X not in that set. Let xn be the label of the
closest circle to x in An. If n is large enough, the distance |x − xn| will be
no greater than 2/n.

For n > m, let Nm,n be the graph neighbourhood of radius m around xn
in Gn. Let Am,n be the set of circles in An corresponding to vertices in Nn.
Similarly, let Bm,n be the corresponding ellipses in Bn.

A map g from ellipses of shape ν(x) to circles

By Corollary 4.3.1, the linear map f(z) = z + νz̄ takes circles to ellipses of
shape ν. We think of it as a map with bar-Beltrami coefficient ν.

Let g be the inverse map, g(z) = (z − νz̄)/(1− |ν|2). It takes ellipses of
shape ν to circles, and it is not difficult to see that it will take ellipses of
shape approximately ν(x) to approximate circles.5

5In general, g takes an ellipse of shape µ to an ellipse of shape (µ− ν)/(1− ν̄µ).
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7.2. The bar-Beltrami coefficient of fn

The shapes of the ellipses in Bn,m are all about the same

The circles Am,n are contained in the ball of radius 2(m + 1)/n around x.
Hold m fixed and make n large. Then that ball will shrink to a point. The
shape field is continuous, and the shapes of the ellipses in Bm,n are taken
from points in the ball. So the shape of the ellipses Bm,n will converge
to ν(x) as n→∞ if m is held fixed.

That means that, for every fixed m, there is some Nm so that ellipses
in g(Bm,n) have distortion less than 1 + 1/m whenever n ≥ Nm.

Applying g to them will turn them all into approximate circles

Consider Am,n and Bm,n. These are ellipse packings of the same graph: a
neighbourhood of size m in the infinite triangular lattice.

If n ≥ Nm, then the ellipses in g(Bm,n) have distortion less than 1+1/m.
By the Finite Rigidity Theorem 6.3.2, as m→∞ with n ≥ Nm, the ratio of
diameters of adjacent ellipses in g(Bm,n) must converge to 1.

The map g ◦ fn is close to conformal at x

Let φn be the restriction of the piecewise linear map fn to the triangle
containing x. We have seen that the ellipses in the image packing g(Bn,m)
are all approximately circles and all about the same size, when m is large.

So g ◦ φn is a linear map from an equilateral triangle to an approxi-
mate equilateral triangle. By Theorem A.1.1, the Beltrami coefficient of the
map g ◦ φn is small at x if n is large enough.

Uniformity on compact sets

To get the bound above, we had two requirements. First, ν had to be
sufficiently close to ν(x) near x. Second, the point xn had to be surrounded
by a large enough neighbourhood that looks like the triangular lattice.

Suppose x is in a compact set F ⊂ X. Then ν is uniformly continuous
on that set, so the first requirement is satisfied uniformly in F . The second
requirement is satisfied with a uniform n, because the distance from x to
the complement of X is bounded below.

Therefore, the Beltrami coefficient of the map g ◦ φn will be uniformly
small for x in that compact set.
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The bar-Beltrami coefficient of fn

Suppose that we write g ◦φn = α(z+µz̄), as in Lemma 4.1.1. Here |µ| goes
to zero as n→∞.

Then f = z + νz̄ and g are inverses, so

φn = f ◦ g ◦ φn = f(α(z + µz̄)) = α(z + µz̄) + να(z + µz̄)

= (α+ νᾱµ̄)z + (αµ+ νᾱ)z̄.

The bar-Beltrami coefficient is the coefficient of z̄ divided by the complex
conjugate of the coefficient of z:

(φn)z̄/(φn)z =
αµ+ νᾱ

ᾱ+ ν̄αµ
= ν +

αµ− |ν|2αµ
ᾱ+ ν̄αµ

= ν + αµ
1− |ν|2
ᾱ+ ν̄αµ

.

If µ is small, this is approximately ν. So as n → ∞, the bar-Beltrami
coefficient of φn approaches ν. But φn is just the restriction of fn to a
neighbourhood of x.

So the bar-Beltrami coefficient of the map fn at x converges to ν(x).
And this convergence is uniform on compact sets in X, if we leave out the
set of measure zero of points where some fn is not differentiable.

7.3 Subsequences of fn converge to a
homeomorphism

The Ring Lemma 6.1.1, together with Theorem A.2.1, tells us that the
maps fn are K-quasiconformal.

The image of the map fn is the union of every triangle in Bn. The
Length-Area Lemma 6.2.1 tells us that if n is large, then the boundary
ellipses in the image packing Bn are small, so the boundary of the packing
must be close to the edge.

It follows that the image of fn eventually contains every compact set in
the unit disc. So we are in the situation of Theorem 5.3.5. We conclude
that if f is any subsequential limit of fn, then it is a K-quasiconformal
homeomorphism of X onto the unit disc.

The convergence is uniform, so we have f(z0) = lim fn(z0) = 0, and
similarly we have f(z1) on the real line.
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7.4 The bar-Beltrami coefficient of any limit
homeomorphism is ν(x)

We have shown that subsequential limits of fn all converge to homeomor-
phisms X → {|z| < 1}. Replace fn by such a subsequence, and let f be its
limit.

Then we have the following theorem:

Theorem 7.4.1. The bar-Beltrami coefficient of f is ν.

Proof. The conditions of Theorem 5.3.5 are satisfied. By the proof of
that theorem, the inverse maps gn = f−1

n converge uniformly on compact
sets to g = f−1. The Beltrami coefficient of the function gn is −νn(gn(x)),
by Lemma 7.1.1.

On a set of measure zero, νn(gn) does not exist. Suppose x is not in any
such set for any n. Then νn converges uniformly to ν on compact sets in X,
and g(x) ∈ X, so we will have −νn(gn(x))→ ν(g(x)) as n→∞.

But this means that the Beltrami coefficients of the inverse maps con-
verge to ν(g(x)). We can now use the standard Theorem 5.3.4, which tells
us that g(x) has Beltrami coefficient ν(g(x)). Using Lemma 7.1.1 in reverse,
we find that the bar-Beltrami coefficient of the limit f is ν(x).

7.5 Existence, but no uniqueness result

What have we proven?

Final Theorem. Let fn be the maps from Thurston’s revised procedure,
with shape field ν.

Then any subsequence of fn has a further subsequence that converges
to a quasiconformal homeomorphism f : X → {|x| < 1} with f(z0) = 0
and f(z1) on the real line. The convergence is uniform on compact sets.

The bar-Beltrami coefficient of any such f is ν.

We have done that using the basic theory of quasiconformal functions,
without using any theorems on the existence of such a map. So we have at
least proven that such maps exist.

7.5.1 The problem with the normalization

Unfortunately, it is not clear to me how to prove that such a map is unique.
If we take off the condition that f(z1) be on the real line, then we will get a
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one-parameter family of functions. This is a special case of Theorem 9.0.3
in Astala et al. [13].

That theorem uses the normalization that a point on the boundary of X
should go to a specified point on the unit circle, or in general, a prime end
in X should do so. Under that normalization, these functions f are unique.
See [13], Section 9.2.2, page 267.

But this doesn’t seem to work in our case. The functions fn don’t nec-
essarily converge uniformly on the boundary, so it’s not clear what kind of
condition on fn would force something to happen on the boundary of f .

It is reasonable to expect that some other normalization condition should
be able to pin down f exactly, but I haven’t been able to find one.

7.6 Future directions

7.6.1 Solving the Beltrami equation instead of the
bar-Beltrami equation

We may be able to allow the shape of the ellipses to depend on their centre,
not the centre of the corresponding circle. This doesn’t work with Schramm’s
blunt theorem [9] in general, because we may not get a ‘packable’ collection,
but there may be some alternative theorem that would allow it.

In that case, we could get a map f that solves the differential equation

fz̄ = −µ(f(z))fz,

say, and then the inverse would solve the Beltrami equation gz̄ = −µgz. This
would give us a geometric way to find solutions of the Beltrami equation.
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Appendix A

The distortion of circle and
ellipse packings

A.1 Bounds on Beltrami coefficients

In Thurston’s procedure, we are piecing together oriented linear maps that
take an equilateral triangle to a certain image triangle. That image triangle
is defined in terms of an ellipse packing.

It is proven in Chapter 2 that tangent ellipses cannot be too different in
size in an ellipse packing of a triangulation of bounded degree. It turns out
that that, by itself, gives us a bound on the Beltrami coefficient of the maps
in Thurston’s procedure. We prove that in this appendix.

Only the first theorem in this appendix is logically necessary. We see
in Chapter 2 that if an ellipse is surrounded by other ellipses packed in a
large number of generations of the regular hexagonal packing, then adjacent
ellipses become almost the same shape and size.

The coefficients of the map are continuous under small changes in the
image triangles. The continuity is uniform if the image triangles are bounded
away from degeneracy. This is clear from the proof of Theorem A.1.1.

So we know that the maps are eventually K-quasiconformal on every
compact set, once we have enough generations surrounding every ellipse.
This is all we need to use convergence.

The rest of the appendix will prove that every map fn isK-quasiconformal
for a uniform K, without using the Rigidity Theorem.

Note! Every lemma in this appendix has an unstated assumption.
Whenever two circles or ellipses E1, E2 are described as tangent, we also
assume that their diameters are comparable.

That is, Equation A.1 holds for some m:

1

m
≤ diam(E1)

diam(E2)
≤ m. (A.1)

This assumption is justified by the Ring Lemma, Lemma 6.1.1.

33



A.1. Bounds on Beltrami coefficients

A.1.1 Triangle maps: If the angles in the image triangle
aren’t too small, then µ is bounded.

Theorem A.1.1. Let θ > 0. Let T be a triangle with vertices a, b, c ∈ C.
Let f(z) be the oriented linear map that sends 0 to a, 1 to b, and eiπ/3 to c.
Write f(z) = a+ α(z + µz̄).

Suppose no angle of T is less than θ. There exists k < 1 depending only
on θ so that |µ| ≤ k. If c→ eiπ/3, then |µ| → 0.

Proof. The coefficient µ isn’t affected by uniform scaling or rotation
of the image, so we can assume that a = 0 and b = 1.

We have f(0) = 0, so a = 0. The other data that we have is

f(1) = α(1 + µ) = 1

f(eiπ/3) = α(eiπ/3 + µe−iπ/3) = c

Therefore,

c− eiπ/3
c− e−iπ/3 =

f(eiπ/3)− eiπ/3f(1)

f(eiπ/3)− e−iπ/3f(1)
=
µα(e−iπ/3 − eiπ/3)

α(eiπ/3 − e−iπ/3)
= −µ. (A.2)

This already shows that if c→ eiπ/3 then |µ| → 0.
We want to bound the absolute value of (c − eiπ/3)/(c − e−iπ/3) by

some k < 1. Let γ = eiπ/3. Then |µ| ≤ k is equivalent to the inequal-
ity

cc̄− γ̄c− γc̄+ 1 ≤ k2(cc̄− γc− γ̄c̄+ 1).

Completing the square, this is∣∣∣∣c− γ − k2γ̄

1− k2

∣∣∣∣2 ≤ k2

(1− k2)2
.

This is a circle of radius k/(1−k2) and centre
(

1
2 ,

1
2(1+k2)/(1−k2)

)
. The

lowest point of the circle is
(

1
2 ,

1
2(1− k)/(1 + k)

)
. As k → 1, that converges

to
(

1
2 , 0
)
. As long as the third point c is inside this circle, the distortion will

be less than or equal to k. Figure A.1 shows what this looks like.
The requirement that the angles of the triangle are at least θ puts two

conditions on |c|:

• If |c| is reasonably large, then the angle ∠acb will be small. It is largest
when the triangle is isoceles, and in that case |c|(2 sin θ∠acb/2) = 1,
or |c| . 1/θ.
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A.1. Bounds on Beltrami coefficients

y

Figure A.1: The acceptable values of c, for k = 0.4, 0.6, 0.8, 0.95. The red
circle is at the origin.

• If Re c > 1/2, then 1/2 sin θ∠bac ≤ |c| sin θ∠bac = Im c. If Re c ≤ 1/2,
then we get 1/2 sin θ∠abc ≤ Im c. In either case, we get Im c ≥ 2 sin θ.

Fixing θ, it is possible to pick k large enough that any point meeting
both these conditions is inside the circle above. If we do that, then |µ| ≤ k.
This proves the result.

Corollary. Let f(z) be an oriented linear map that sends an oriented
equilateral triangle A,B,C to a, b, c. Write f(z) = f(z0) + α(z + µz̄).

Suppose no angle of 4abc is less than θ. Then |µ| ≤ k, where k is the
same bound that we got in Theorem A.1.1.

Proof. Let h(z) = A+Bz. This sends 0, 1, eπi/3 to A,B,C. Then

h ◦ g(z) = f(z0) + α(A+ µĀ) + αB

(
z + µ

B̄

B
z̄

)
takes 0, 1, eπi/3 to a, b, c.

By Theorem A.1.1, |µB̄/B| = |µ| is bounded by k.

A.1.2 The angle is not too small in circle packings

Lemma A.1.2. Suppose we have one circle C1 and two others C2, C3 tangent
to it, and that their interiors are all disjoint.

Let the centres of the circles be called c1, c2, c3. Let their radii be r1, r2, r3.
Let the tangent points be called t12, t13.
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A.1. Bounds on Beltrami coefficients

The angle ∠t12c1t13, the angle of the arc connecting the tangent points,
is bounded below by a constant depending only on m.

Proof. The angle between the tangent points is the same as the angle
between the centres of the circles ∠c2c1c3. The rest follows immediately
from the cosine law, Theorem A.1.1, and Equation A.1.

We recall the cosine law. Let 4ABC be a triangle which has side
lengths a = BC, b = AC, c = AB, and where the angle ∠ACB is θ. Then

c2 = a2 + b2 − 2ab cos θ

or cos θ = (a2 +b2−c2)/2ab. The distance between the centres of C2 and C3

is at least r2 + r3, and the other circles are tangent, so we can write

cos θ ≤ (r1 + r2)2 + (r1 + r3)2 − (r2 + r3)2

2(r1 + r2)(r1 + r3)
=

2r1r2 + 2r1r3 + 2r2
1 − 2r2r3

2(r1 + r2)(r1 + r3)

= 1− 2r2r3

(r1 + r2)(r1 + r3)

≤ 1− 2

(
1

m+ 1

)2

because r2/(r1 + r2) = 1/( r1r2 + 1) ≥ 1/(m+ 1)

We have 1 − 1
2θ

2 ≤ cos θ ≤ 1 − 2
(

1
1+m

)2
. So θ can’t be any smaller

than 2/(1 +m).

A.1.3 The curvature of an ellipse

Suppose E is an ellipse with diameter d which has distortion K. Rotate it
so that the major axis is horizontal, and translate it so that the centre is
zero. Then the boundary curve is

x(θ) =

(
d

2
cos θ,

d

2K
sin θ

)
. x′(θ) =

(
−d

2
sin θ,

d

2K
cos θ

)
We can find the curvature in the sense of differential geometry, and it is

no greater than 2K/d at any point on the curve.

κ(θ) =

∣∣∣∣ dds
(
d

ds
x′(θ)

)∣∣∣∣ =

∣∣∣∣x′(θ)× x′′(θ)

|x′(θ)|3
∣∣∣∣ =

(d/2)2/K√(
(d
2 )2 sin2 θ + ( d

2K )2 cos2 θ
)3 ≤ 2K

d
.

The curvature does not depend on rotation or translation, so any ellipse
as above has curvature at most 2K/d.
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A.1.4 The angle is not too small in an ellipse

Lemma A.1.3. Suppose we have one ellipse E1 and two others E2, E3 tan-
gent to it, so that their interiors are all disjoint and no ellipse has distortion
more than K.

Let the centre of E1 be e1. Let the tangent points E1 ∩ E2 and E1 ∩ E3

be t12 and t13.
Then the angle between the tangent points, ∠t12 e1 t13, is bounded below

by a constant depending only on m and K.

Proof. A remark. Let E be any ellipse with diameter d which has
distortion K. The curvature of the boundary of that ellipse is never more
than 2K/d, so we can pick any point on the border of the ellipse and inscribe
a circle of diameter d/2K in the ellipse touching that point.6

Proof. Suppose E1 is a general ellipse. Apply a non-uniform scaling to
make it a circle. The distortion of the other ellipses may increase, but not
to more than K2.

At this point, we have one circle and two disjoint ellipses tangent to it.
Now use the remark. The tangent points stay the same, and the diameters
decrease by a bounded factor (at most K2).

Now use Lemma A.1.2 to see that the angle of the arc between the
tangent points is bounded below. The ratio of diameters may have increased
to mK2,

Finally, reverse the linear map. This might change the angles by a
factor of K, but not more. Therefore, the angle is still bounded below
by 2mK3/(1 +mK2).

Lemma A.1.4. The other two angles, ∠e1 t12 t13 and ∠e1 t13 t12, are also
bounded below by a constant depending only on m and K.

6This comes from the following general fact. Suppose X is a convex shape with a twice-
differentiable border, and the curvature of the border is never more than κ. Let x ∈ ∂X.
Then the circle of radius 1/κ tangent to the border at x is contained in X.

Sketch of a proof: let the tangent point be at (0, 0), the tangent be horizontal, and X
be above the curve x(t) = (x(t), y(t)) ∈ R2. For positive t,

x(t) =
∫ t
0
eθ ds = 1

κ

∫ θ(t)
0

eθ dθ +
∫ θ(t)
0

eθ
(
ds
dθ
− 1

κ

)
dθ.

If 0 ≤ θ(t) ≤ π, the right-hand summand is in the cone between 0 and θ(t) degrees, so the
curve is a circle plus a vector in the half-plane determined by the outer normal. At θ = π,
the y coordinate is at least 2/κ, which is the height of the circle. The same thing is true
for negative t. Draw a line connecting the two endpoints with θ(t) = ±π; the resulting
set contains the circle and is inside the convex set X.
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A.2. Thurston’s procedure and µ

A.1.5 The angle is not too small in an interstice

Lemma A.1.5. Let E1, E2, E3 be mutually tangent ellipses. Let t12, t23, t31

be the tangent points. Suppose no ellipse has distortion any more than K.
Then the angles in the triangle t12t23t31 are bounded below.

Proof. The boundary of an interstice is three sub-arcs of an ellipse. For
an angle to be small, at least one of the ellipse arcs would have to connect
the endpoints of the long side of a sharp triangle.

Then it would have to be long and narrow. There are two ways this can
happen. Either the angle of the sub-arc in the ellipse is small, or the ellipse
is very distorted. The first possibility is ruled out by Lemma A.1.3, and the
second one is ruled out by the bound on K.

A.2 Thurston’s procedure and µ

Theorem A.2.1. Let Bn be a circle packing from Thurston’s original pro-
cedure, or an ellipse packing from Thurston’s revised procedure.

Let m > 0. Suppose that none of the ellipses in Bn have distortion more
than K, and that for every tangent pair of ellipses E1, E2 in Bn,

m diam(E1) ≤ diam(E2) ≤ diam(E1)

m
.

Then there is a constant k < 1, depending only on m and K, so that

∂fn
∂z̄

= µ
∂fn
∂z

,

with |µ| ≤ k almost everywhere in the domain of definition of fn.

Proof. First, we show that the angles in the image triangles are
bounded below. There are several different cases, each of which is covered
by a lemma in this chapter.

Case I: The maps come from Thurston’s original procedure. If the radii
of adjacent circles are comparable, then the angles in every image triangle
are bounded from below by Lemma A.1.2.

In Thurston’s revised procedure, there are two different kinds of im-
age triangles: triangles connecting the centre of an ellipse to two boundary
points, and triangles covering an interstice.

Case IIa: The maps come from Thurston’s revised procedure, and the
triangle is contained in an ellipse. Lemma A.1.3 shows that the angle at
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A.2. Thurston’s procedure and µ

the centre is bounded below, and Lemma A.1.4 shows that the angles at the
tangent points are too.

Case IIb: The map comes from Thurston’s revised procedure, and the
triangle contains an interstice. Lemma A.1.5 shows that the angles in in-
terstices are bounded below.

Every image triangle has angles greater than some uniform lower bound,
so the Beltrami coefficient of every linear map in the definition of fn is less
than or equal to k for some uniform k < 1.

But almost every point in the domain of fn is in one of those linear maps,
so fn is K-quasiconformal for K = (1 + k)/(1− k).
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Appendix B

Schramm’s blunt packing
theorem and Theorem 3.1.1.

B.1 A packing theorem for ellipses

In this appendix we explain how to get the ellipse packing Theorem 3.1.1
from Schramm’s blunt packing theorem.

The big difficulty is that Schramm’s theorem lets us fix two adjacent
sets Fa and Fb on the boundary. We want to choose a single vertex v not on
the boundary and have the centre of that ellipse be zero.

Here is the theorem we start from, quoted from page 325 of [9].

Theorem B.1.1. (Schramm) Let T be a triangulation of S2 with vertex
set V , let [a, b, c] be a triangle in T , and let D be a decent trilateral D =
(Da, Db, Dc) in the sphere. For every vertex v ∈ V \ {a, b, c}, let Fv be a
packable collection of sets in D.

Then there exists a unique packing P = (Pv : v ∈ V ) of T in the sphere
whose tangency graph is T and which satisfies Pv ∈ Fv, v ∈ V \ {a, b, c} and
Pv = Dv, v = a, b, c.

Proof. See the paper [9]. The reader may well ask what makes a
collection ‘packable’ and a trilateral ‘decent,’ but we will not repeat the
definitions here; see pages 324–325.

The class of ellipses with a certain shape is just a scaling and rotation
of the ‘packable’ collection of circles, so it is also ‘packable’ in the sense of
Schramm. See the paper for more details.

So Theorem B.1.1 applies to ellipses. We get the following corollary:

Corollary B.1.2. Let T be an oriented planar triangulation with an
outside edge. For every vertex in the triangulation, let Ev be some fixed
ellipse. Let a and b be two adjacent vertices in the triangulation that are on
the boundary of the graph.

Fix two tangent ellipses Ea, Eb which are both tangent to the boundary
of the unit disc. There is a unique oriented packing of T in the unit disc so
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B.2. From that to Theorem 3.1.1

that Fv has the same shape as Ev for every vertex v, and Fa = Ea, Fb = Eb.

Proof. The triangulation in Theorem B.1.1 is a triangulation of the
sphere, and we want to use triangulations of the unit disc. We will therefore
adjoin a point at ∞ and we will demand that E∞ be the complement of the
unit disc.

Then we use Schramm’s theorem with the trilateral formed by the inside
boundary of Ea, Eb, E∞. There are two choices of inside boundary, and we
choose the one that respects the orientation of the packing.

Every point on the boundary is adjacent to ∞, so it is tangent to the
unit disc, and the packing has the desired tangency graph.

B.2 From that to Theorem 3.1.1

In Corollary B.1.2, we are only allowed to pick two adjacent vertices a, b on
the boundary. On the other hand, in Theorem 3.1.1, we may pick any two
vertices v, u, as long as v is not on the boundary. So we must study the
behavior of the interior vertices as Fa, Fb change.

It is natural to begin by finding a nice parametrization of the ways to
choose Fa, Fb.

B.2.1 Parametrization of Fa, Fb

We fix two ellipses Ea, Eb.
Suppose Fa, Fb are ellipses with the same shape as Ea, Eb respectively,

and that both ellipses are tangent to each other and the unit circle, as in
Corollary B.1.2.

The class of all possible choices of Fa, Fb can be written as a three-
parameter family, Z = {|z| < 1} × S1.

To see this, let (x, θ) ∈ Z. Then:

Lemma B.2.1. There is a unique choice of Fa and Fb so that the tangent
point is at x and the tangent line at x is at angle θ to the positive real axis
with Fa on the left.

Proof. Any ellipse has exactly one point on its boundary where the
angle of the tangent is θ. So x, θ determine everything but the size of each
ellipse.

We are free to pick the size of the two ellipses, keeping the tangent point
fixed. We must show that there is exactly one choice with both ellipses
tangent to the unit circle.
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B.2. From that to Theorem 3.1.1

If we scale up an ellipse around the tangent point while keeping the unit
circle fixed, it is the same as shrinking the unit circle around the tangent
point, while keeping the ellipse the same size. That is, the two pictures are
‘similar’ in the sense of geometry:

And in the second picture, the copies of the unit circle with different
scaling are strictly contained in each other. So only one scaling will result
in a tangent point without overlap.

Each ellipse has a unique possible scale, so the arrangement is determined
by x, θ, and if we know the ellipses we can determine x, θ, so the map is
bijective.

We imagine each ellipse as an element in R2 × (0,∞), where the first
coordinate is the centre and the second one is the diameter. Then,

Lemma B.2.2. Let Φ be the map (x, θ) 7→ (Fa, Fb). Then Φ is continuous
on Z, and the inverse is continuous on Φ(Z).

Proof. The map is continuous because a slight change in x or θ can be
corrected by a slight scaling.

The inverse takes a pair of ellipses to their tangent point and tangent
angle, and that is clearly continuous on the subset Φ(Z) of (R2 × (0,∞))2

where the ellipses are tangent.

B.2.2 Parametrization of the packing

Let (x, θ) ∈ Z. There is a unique packing F given by Schramm’s theorem so
that the ellipses at a and b are Φ(x, θ) respectively, and that map depends
continuously on x and θ.

If the map is not continuous, we can find a subsequential limit of pack-
ings Fn so that the tangent point and angle converge to x and θ, but the
other ellipses converge to something other than Fa. This would contradict
uniqueness.
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B.2. From that to Theorem 3.1.1

We have two points v, u that we want to look at. Let Ψv be the map that
takes a point (x, θ) in Z to the centre of the ellipse Fv in that packing, and
similarly for Ψu. Let Θu be the argument of the complex number Ψu −Ψv.

Theorem B.2.3. Suppose that every border vertex in T is connected to
an interior vertex, and the set of interior vertices is connected.

There is an annulus Nr = {r < |x| < 1} depending on the graph and the
ellipse shapes so that |Ψv(x, θ)− x| < 1/2 whenever x ∈ N .

Proof. If |x| is very close to 1, then at least one of the two ellipses
in Φ(x, θ) must be small. Some interior ellipse is tangent to the small one.

The Ring Lemma states that any interior ellipse tangent to a small ellipse
must be small too. For a fixed finite graph, the bound is uniform. The set
of interior vertices is connected, so if x ∈ Nr with r very close to one, we
can force every interior ellipse to be uniformly small.

One of those ellipses is Fv, and we can make it arbitrarily close to x.
This proves the result.

Now we can prove the existence theorem:

Theorem B.2.4. There exists a packing (x, θ) with Fv at the origin
and Fu on the positive real line.

Remark. Let r : Z → Z be the map r(x, θ) = (−x, θ + π). Then the
pair of ellipses Ψ(r(x, θ)) are the ellipses Ψ(x, θ) reflected 180◦ around the
origin. Ellipses are 180◦ rotationally symmetrical, so if we reflect a packing
around the origin, we get another packing so that all the ellipses have the
correct shape, and their new center is the negative of their original center.

One implication of this is that, if we have a packing with Fv at the origin
and Fu on the negative real line, we can reflect it around the origin to get a
packing satisfying the conditions of the theorem.

Proof. Suppose that there is no such packing. Then (x, θ) 7→ (Ψv,Θ)
is a map from {|x| < 1} × S1 into the set {|x| < 1} × S1 with two points
missing: (0, 0) is missing by assumption, and, by the remark, (0, π) is also
missing.

Let Mr be the set Nr × S1. Let Dθ be the disc {|x| ≤ r} × {θ}, whose
boundary is in Mr for every θ.

The basic idea is that Dθ is a continuous family of discs, and the edge is
always in Mr. As θ goes from zero to π, the image of Dθ in the torus below
travels halfway around and winds up exactly at its reflection.

But that should not be possible: the disc has to wrap around one of the
missing points, so it can’t wind up back at itself.
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B.2. From that to Theorem 3.1.1

We now say the same thing in terms of relative singular homology. We
start with a filled torus with two missing points, represented by dots.

1 1

1

2 2

2

→ →

We smash the middle of the the regions 1 and 2 into two thin sheets,
which form the top and bottom of the sphere. Everything else goes into a
one-dimensional line around the center, represented by the shaded ring.

Call this smashed sphere S. Call the ring ρ. We have a map σ : Z → S,
the composition of the map (Ψv,Θ) and the smashing.

By Lemma B.2.3, Φv(Mr) is contained in a small layer on the outside
of the torus, so σ(Mr) is contained in ρ. Also, the map r passes through
this smashing, and acts on S by reflecting the sphere through the horizontal
plane and then rotating the whole thing 180 degrees around the axis.

Let Dθ be the disc {|x| ≤ r} × {θ}. We think of this as a simplex in the
second chain group. Its boundary is contained in Mr, so it is an element
in the second relative homology group H2(Z,Mr). Then Lemma B.2.3 says
that the image of ∂Dθ under σ wraps once around that shaded ring. That
is, it is a generator for H1(ρ) ∼= Z.

Expanding the ring a little and using excision, we can see that H2(S, ρ)
is isomorphic to Z × Z. The first generator, say α, is the top half of the
sphere and the second one, say β, is the bottom half.

We have a boundary map ∂ : H2(S, ρ)→ H1(ρ) ∼= Z, and we may choose
orientations on α and β so that ∂α = ∂β = 1. That is, the boundaries of
both α and β wrap once counterclockwise around the ring ρ. Then r : S → S
takes α to β, and vice versa.

The boundary σ∗(∂Dθ) = ∂σ∗(Dθ) is an element of homology that wraps
once counterclockwise around ρ, so σ∗(Dθ) must be (n+ 1)α+ nβ for some
integer n. Then r∗(σ∗(Dθ)) = nα + (n + 1)β, so the reflection map r does
not preserve σ∗(Dθ).

In particular, it doesn’t preserve the class of σ∗(D0). But r takes D0

to Dπ, and those two discs are equal in homology.
We should have σ∗(D0) = σ∗(Dπ) = σ∗(r(D0)) = r∗(σ∗(D0)), but in fact

they are different. This is a contradiction, so the assumption is wrong. The
two points cannot be missing from the torus.
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B.3. A uniqueness problem, again

B.3 A uniqueness problem, again

This result, together with Corollary B.1.2, shows that there exists a packing
of ellipses in the unit disc with the properties in Theorem 3.1.1.

It does not show that such a packing is unique. Although Schramm’s
theorem gave us uniqueness, we have lost it along the way.

We mentioned that there is not a clear choice of normalization for the
bar-Beltrami equation, and there is a similar problem here. If one could
find a good normalization for the finite packing in Theorem 3.1.1 so that the
result was unique, it would probably lead to a full and satisfying uniqueness
conclusion in the Final Theorem.
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