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We define the continuous version of the Diaconis-Fulton smash sum, as
described in Levine and Peres [4], and prove that the definition makes sense
and satisfies the axioms in the main paper. The proof follows Sakai [6].

1 The axioms
The axioms in the main paper are:

Translation invariance. For any c ∈ Rd, (A+ c)⊕ (B + c) = (A⊕B) + c.
Rotation invariance. For any orthonormal matrix U : Rd → Rd,

UA⊕ UB = U(A⊕B).

Commutativity. A⊕B = B ⊕A.
Associativity when possible. If both sums A ⊕ B, B ⊕ C are bounded,

then: (A⊕B)⊕ C = A⊕ (B ⊕ C).
Monotonicity. A⊕B ⊇ A,B. If A ⊆ C, then A⊕B ⊆ C ⊕B.
Conservation of mass. Let λ be Lebesgue measure. Then the λ-measure

of A⊕B is equal to λ(A) + λ(B).

2 Definitions

2.1 Subharmonicity
Let Ω ⊆ Rd be an open set and C ⊆ Ω be an open subset.

Recall that a function h : Ω → R ∪ {+∞} is subharmonic on C if it is
locally integrable on C and:

(a) it is upper semicontinuous, i.e. lim supy→x h(y) ≤ h(x), and

(b) for every point x ∈ C and sufficiently small r > 0, the value of h at x
is less than or equal to the average of h on Br(x).

We can write this on one line as

lim sup
y→x

h(y) ≤ h(x) ≤ inf
r>0

1

λ(Br)

∫
Br(x)

h(y) dy,

and the left side is at least as big as the right, so those are equalities.

Exercise. If h and −h are subharmonic on an open set, then h is twice
continuously differentiable on that set and ∇2h = 0.
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2.2 Quadrature sets
We’ll say that a function w is a weight function if it is bounded, nonnegative,
and measurable. It is a properly supported weight function if w ≥ 1 on some
bounded open set and w = 0 outside that set.

A quadrature set for a properly supported weight function w is a bounded
open set Q with the property that

∫
hw dx ≤

∫
Q
h dx for every integrable

subharmonic function h on Q.
In particular,

∫
w dx = λ(Q), because the two functions ±1 are subhar-

monic and integrable, and the two inequalities give us an equality. The centre
of mass is the same,

∫
xiw dx =

∫
Q
xi dx, because all the functions ±xi are

subharmonic and integrable. The moment of inertia of Q is no less than that
of w:

∫
|x|2 w dx ≤

∫
Q
|x|2 dx, because |x|2 is subharmonic.

This definition is opaque; here is some intuition about what it means.

2.2.1 Intuition about quadrature sets

Here is a problem in the theory of Brownian motion that gives some intuition.
Suppose I have a properly supported weight w. Imagine that I place particles
in Rd with density measure w dλ, and then run a stopped Brownian motion
on each particle.

If the particle that starts at x is stopped at Tx, then the final distribution
of particles has density measure µ with µ(A) =

∫
Px[Bx(Tx) ∈ A]w(x) dx.

Let Q be a bounded open set. Let Bx(t) be Brownian motion started at
x. Pick a family of stopping times Tx for x ∈ Q so that no time is greater
than the first exit time inf{t : Bx(t) /∈ Q}. Then

Exh(Bx(Tx)) ≥ h(x)

for any bounded subharmonic h on Q. Integrating over the weight function
gives the family of integral inequalities∫

Exh(Bx(Tx))w(x) dx ≥
∫
h(x)w(x) dx.

Suppose there is a choice of stopping times so that the final density of
particles is 1Q, meaning that for every measurable set A ∈ B(Rd),∫

P[Bx(Tx) ∈ A]w(x) dx = λ(A ∩Q).

In that case, we have the quadrature set property for Q:∫
Q

h(x) dx =

∫
Exh(Bx(Tx))w(x) dx ≥

∫
h(x)w(x) dx.

[not finished]
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2.3 Bulky open sets
Recall that two open sets A,B are essentially equal if λ(A∆B) = 0, and that
an open set is bulky if it contains every open set essentially equal to it.

If A is an open set, there is exactly one bulky set that is essentially equal
to it, and we denote that set by [A] =

⋃
{B | B ball, B ⊆ A}.

2.4 Definition of the sum
The definition of the smash sum relies on the existence and uniqueness theo-
rems for quadrature sets of properly supported weight functions.

First, quadrature sets are unique up to sets of measure zero.

Corollary 4. Quadrature sets are essentially unique. If C and D are two
quadrature sets for the same weight function, then λ(C ∆ D) = 0.

Second, we will say a weight function is properly supported if there is a
bounded open set Ω with the property that w is at least 1 on Ω and identically
zero outside it. The second theorem says that a bounded, properly supported
weight function has at least one quadrature set.

Corollary 33.
If w is bounded and properly supported, there is a quadrature set for it.

Definition of the sum. If A and B are bounded open sets, let the sum of A
and B be the unique bulky quadrature set for the weight w = 1A + 1B .

That weight is properly supported on A ∪B, so there is a quadrature set
for it by Corollary 33 quoted above.

3 Green’s function
We define Green’s function for the Laplacian in terms of Brownian motion
as on page 80, section 3.3 of Mörters and Peres [4]. It is a general definition
which works on any bounded open set. The details are sketched here.

Let By be Brownian motion started at y. The probability density function
of By(t) is P[By(t) ∈ A] =

∫
A
p(t;x, y) dx, where

p(t;x, y) = (2πt)−d/2 exp
(
−||x− y||2/2t

)
.

Here ||x − y|| is Euclidean distance. This function is symmetric in x and y,
and it is called the unrestricted transition kernel.

It’s a solution of the heat equation,(
∂t −

1

2
∇2
x

)
p(t;x, y) =

(
∂t −

1

2
∇2
y

)
p(t;x, y) = 0.

Notice the factor of 1/2. We want our definition to be consistent with the
usual mathematical one, where the constant is 1, so we’ll speed up the time
of the Brownian motion by a factor of two.
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Define the free-space Green’s function for d ≥ 3 as:

G(d)(x, y) :=

∫ ∞
0

p(2t;x, y) dt =
Γ(d/2− 1)

4πd/2
||x− y||2−d.

In two dimensions, define it as the parametric limit

lim
d→2

Γ(d/2− 1)

4πd/2

[
||x− y||2−d − 1

]
= − 1

2π
log ||x− y||.

It’s symmetric, G(x, y) = G(y, x), and it’s smooth and harmonic in both
variables on Rd × Rd \ {x = y}, meaning ∇2

xG(x, y) = ∇2
yG(x, y) = 0.

Lemma 1. In the distributional sense, ∇2G(x, ·) = −δx.

Sketch of proof. Let h be a compactly supported test function, and inte-
grate G∇2h = ∇ · (G∇h− h∇G) over Rd \Bε(x).

Use Stokes’s theorem to turn it into an integral on ∂Bε(x), estimate that
using ∂G

∂r = −1/(Cdr
d−1) and the continuity of h, and then take ε→ 0.

The restricted transition kernel, the transition kernel of a Brownian motion
killed when it leaves an open set C, is the function pC satisfying

P
[
By(t) ∈ A and By([0, t]) ⊆ C

]
=

∫
A

pC(t;x, y) dx.

Such a function exists, and it is symmetric in the two space variables; this is
proven in the above section of Mörters and Peres.

SetGC(x, y) =
∫∞

0
pC(t;x, y) dt. This is our function, theGreen’s function

of the open set C. From the properties of pC and Brownian motion, we get:

• GC ≥ 0.
• GC(x, y) when x and y are in the same component of C.
• GC(x, y) <∞ if x 6= y, and GC(x, x) = +∞.
• GC(x, y) = GC(y, x).
• GC(·, y) is harmonic on C \ {y}, and superharmonic on C.

It turns out also that G(x, y)−GC(x, y) is harmonic on C × C.

3.1 The extended Green’s function
Writers who describe GD as “the Green’s function” should be condemned to
differentiate the Lebesgue’s measure using the Radon-Nikodym’s theorem.

— Joseph Doob

Even so, there is a subharmonic extension of Green’s function to Rd \{y},
which we refer to as the extended Green’s function.

Theorem 2. If C is a bounded open set with Green’s function GC , there is
an extension gC : Rd × C → R ∪ {∞} so that:
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• gC(x, y) = GC(x, y) when x ∈ C. (So it is superharmonic on C.)

• gC(·, y) is subharmonic on Rd \ {y}.

• gC(·, y) is zero almost everywhere on Cc.

Proof. We just give a reference. This is (c) of Doob’s Theorem 1.VII.4 [1].
(Our set is bounded, so it is Greenian and the theorem applies. A polar
set has measure zero, so when something is true “quasi everywhere,” in other
words on the complement of a polar set, it holds almost everywhere a fortiori.)

4 Monotonicity of quadrature sets
In the last section we saw that, for any bounded open set C and y ∈ C,
there is a function gC(·, y) which is nonnegative everywhere, positive on the
component of y in C, zero almost everywhere outside C, and superharmonic
on C and subharmonic on Rd \ {y}.

The existence of that function implies that quadrature sets get larger as
their weight functions get larger:

Theorem 3. If w ≤ w′ are two nonnegative measurable functions and C is
a quadrature set for w and D is a quadrature set for w′, then λ(C \D) = 0.

Proof. Recall that quadrature sets are by definition open. Let E be a
component of C that is not contained in D; if there is no such component, we
are done. Fix y ∈ E\D. Let hC(x) := gC(x, y). It is nonnegative everywhere.
By the definition of a quadrature set,∫

C

hC dx ≤
∫
hCw dx ≤

∫
hCw

′ dx ≤
∫
D

hC dx.

So
∫
C\D hC dx ≤

∫
D\C hC dx, but that second integral is zero because hC ≡ 0

almost everywhere on Cc. Therefore
∫
C\D hC dx is zero too. Green’s function

is strictly positive on E, so λ(E ∩ (C \D)) must be zero.
An open set has only countably many components. Take the union over

all components E of C to get the result.

Corollary 4. Quadrature sets are essentially unique.

Proof. If C,D are quadrature sets for w, then λ(C \D) = λ(D \ C) = 0.

5 Positivity of the Laplacian

5.1 Distributions and notation
Let Ω be an open subset of Rd.

A distribution on Ω is a continuous linear map C∞c (Ω)→ R, where C∞c (Ω)
has the usual topology of uniform convergence of all derivatives on compact

6



sets. Let D′(Ω) be the vector space of distributions. Recall some standard
facts. If ϕ ∈ D′(Ω), then the derivative ∂iϕ is the distribution that maps
h to −ϕ(∂ih), the minus sign being the result of “partial integration.” The
Laplacian of a distribution ϕ is ∇2ϕ : h 7→ ϕ(∇2h).

Notation.
If µ is a locally finite measure on Ω, or a signed measure, let dµ be the dis-

tribution h 7→
∫
h(x)µ(dx). This integral is well-defined since h is supported

on a compact subset of Ω and µ is finite on that subset by compactness.
If f is a locally integrable function on Ω, let f dλ be h 7→

∫
h(x)f(x) dx,

where as before λ is Lebesgue measure.

A word about this notation. It’s more common to think of measures and
(equivalence classes of) locally integrable functions as being contained in the
space of distributions, so that a measure or function would be written simply
as µ or f . But we will want to compare and add the two types of distributions.
To avoid anti-intuitive expressions like “µ ≤ 1” or “ν ≤ 1 − w” in which one
term looks like a signed measure, the other term looks like a function, and the
proofs look as if we are about to fail undergraduate measure theory, we write
our distributions to make it clear that they are in a common vector space.

5.2 Subharmonic functions on an open set
A distribution ψ ∈ D(Ω) is said to be positive if ψ[h] ≥ 0 for every nonnegative
test function h ∈ C∞c (Ω), and negative if −ψ is positive.

If f is a twice continuously differentiable function which is subharmonic
on an arbitrary subset of Ω, then ∇2f ≥ 0 at every point in that set. Our
goal in this section is to prove a similar result for general functions.

Theorem 5. If f is subharmonic on Ω, then ∇2(f dλ) is positive on Ω.

Proof. Fix h ∈ C∞c (Ω) with h ≥ 0. Let ϕ ≥ 0 be a smooth function on Rd
that is zero outside the unit ball and has unit integral, and ϕ = n−dϕ(x/n).
Then f ∗ ϕn is defined on the support of h for large enough n.

The functions f ∗ϕn are smooth, so derivatives are defined in the classical
sense, and they are subharmonic, because

f ∗ ϕn(x) =

∫
Rd

f(x− y)ϕn(y) dy ≤
∫ [

1

λ(Br)

∫
Br

f(x− y + z) dz

]
ϕn(y) dy

=
1

λ(Br)

∫
Br

f ∗ ϕn(x+ z) dz.

So ∇2(f ∗ ϕn) is defined in the ordinary sense and is nonnegative.
Finally, f ∗ ϕn → f in L1 on supph. Therefore

∫
(f ∗ ϕn)h→

∫
fh, so

∇2(f dλ)(h) =

∫
f ∇2h dx = lim

n→∞

∫
(f ∗ ϕn)∇2h dx

= lim
n→∞

∫
∇2(f ∗ ϕn)h dx

≥ 0.
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That is true for every nonnegative h ∈ C∞c (Ω), so ∇2f is positive on Ω.

Lemma 6. If ψ is a positive distribution on Ω, then there is a locally finite
measure µ on Ω with ψ(h) =

∫
h dµ for every test function h ∈ C∞c (Ω).

Proof. See Rudin [5], chapter 6 exercise 4. We sketch the proof.
Let ψ be a positive distribution. If K ⊂⊂ Ω is a compact subset, then

there is a nonnegative h1 ∈ C∞c (Ω) that is identically 1 on K. Positivity says
0 ≤ ψ(h) ≤ ψ(h1) if h ∈ C∞c (K) and 0 ≤ h ≤ 1. An easy approximation
argument tells us that |ψ(h)| ≤ ψ(h1)‖h‖C(K). By the Riesz representation
theorem, there is a finite measure µK with ψ(h) =

∫
h dµK for h ∈ C∞c (K).

Take a net of compact sets increasing to Ω: the measures are consistent on
those sets, and we get a limit measure µ with ψ(h) =

∫
h dµ ∀h ∈ C∞c (Ω).

Corollary 7. If f is subharmonic on Ω, then there exists a locally finite
measure µ on Ω with ∇2(f dλ) = dµ.

Proof. If f is subharmonic on Ω, then ∇2f is positive on Ω by Theorem 5,
so it is a locally finite measure on that set.

We now study the relationship between averages on concentric balls and
the distributional Laplacian, and use that to handle a function which is sub-
harmonic on an arbitrary measurable set.

5.3 The spherical average function
Suppose f is locally integrable, x is a point in Ω, and 0 < r < R := d(x,Ωc).
Let the average on the sphere of radius r around x be denoted by

Lf (x; r) :=
1

Cd

∫
|z|=1

f(x+ rz) dz.

Here Cd =
∫
|z|=1

1 dz = 2πd/2/Γ(d/2) is the area of the unit sphere in Rd.
This function isn’t defined for every r, but the lemma below tells us that it’s
defined for almost every r ∈ (0, R) and it’s locally integrable on (0, R).

Lemma 8. Let Ω be an open set, x ∈ Ω, R := d(x,Ωc).
If f is locally integrable, then Lf (x; r) is defined for almost every radius

r ∈ (0, R), and
∫ s

0
rd−1|Lf (x; r)| dr <∞ for 0 < s < R.

Also, Lf (x; r) is locally integrable on (0, R).

Proof. Let 0 < s < R. Bs(x) is compact, so
∫
Bs(x)

|f | dx <∞.
Write this as a double integral:

∞ >

∫
Bs(x)

∣∣f(y)
∣∣ dy =

∫ s

0

[∫
|z|=1

∣∣f(x+ rz)
∣∣ rd−1 dz

]
dr.

Tonelli’s theorem tells us that the integral in brackets is finite for almost
every radius on (0, s). Take sn ↗ R to see that the integral is finite for almost
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every r ∈ (0, R) =
⋃
n(0, sn). Therefore, Lf (x; r) := 1

Cd

∫
|z|=1

f(x+ rz) dz is
well-defined for almost every r in (0, R), and Jensen’s inequality says that∫ s

0

rd−1|Lf (x; r)| dr =
1

Cd

∫ s

0

rd−1

∣∣∣∣∣
∫
|z|=1

f(x+ rz)

∣∣∣∣∣ dz dr
≤ 1

Cd

∫ s

0

∫
|z|=1

|f(x+ rz)| rd−1 dz dr

<∞.

We must also prove local integrability. Let r ∈ (0, R), and choose real
numbers t, s with 0 < t < r < s < R. Then (r/t)d−1 ≥ 1 when r ∈ (t, s), so∫ s

t

|Lf (x; r)| dr ≤
∫ s

t

(r
t

)d−1

|Lf (x; r)| dr <∞.

That’s true for any r ∈ (0, R), so Lf (x; r) is locally integrable.

The function Lf (x; ρ) is related to the distributional Laplacian by an
integral equality. We explore that in the next section.

5.4 Spherical averages and the distributional Laplacian
Let f be a locally integrable function on Ω. The lemma below tells us that
we can find certain integrals over the spherical average function Lf (x; r) by
evaluating the distributional Laplacian ∇2(f dλ) at a certain function.

Lemma 9. Let f be locally integrable on Ω and x ∈ Ω. Let R > 0.
If η ∈ C∞c (0, R) is nonnegative, there is a nonnegative test function h ∈

C∞c (Ω) with ∇2(f dλ)(h) = −
∫ R

0
η′(r)Lf (x; r) dr.

Note. If η ∈ C∞c (0, R), η ≥ 0, then η′(r) is a signed weight function that’s
smooth and compactly supported on (0, R), and has total weight zero with
the positive part of the weight “left of” the negative part in the sense that∫ s

0
η′(r) dr is nonnegative for 0 < s < r. The converse is also true: any

function like that will give us a suitable η ∈ C∞c (0, R), η ≥ 0 by integration.

Proof. We extend η to R>0 by setting it to zero when r ≥ R.
Set the test function to h(y) := H(|y − x|), where

H(r) :=

∫ ∞
r

η(ρ)

Cdρd−1
dρ.

Then H(r) is smooth, constant near 0, and zero in a neighbourhood of [R,∞),
so h is smooth and supported on a compact subset of BR(x) ⊆ Ω. That means
it is a test function for distributions on Ω, and the expression ∇2(f dλ)(h)
makes sense.

We prove ∇2(f dλ)(h) = −
∫ R

0
η′(r)Lf (x; r) dr. First, the test function is

radially symmetric around x, which means that its Laplacian is

∇2h =
1

rd−1

d

dr

[
rd−1 d

dr
H(r)

]
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where r = |y − x|. From the formula above, rd−1H ′(r) = −η(r)/Cd, so
Plugging this in with r = |y − x|,

∇2(f dλ)(h) =

∫
f(y)∇2h(y) dy

=

∫
f(y)

1

rd−1

d

dr

[
rd−1 d

dr
H(r)

]
dy

= −
∫
f(y)

1

rd−1

η′(r)

Cd
dy.

Write y = x+ rz where r > 0 and |z| = 1.

∇2(f dλ)(h) = −
∫ ∞

0

∫
|z|=1

f(x+ rz)
1

rd−1

η′(r)

Cd
rd−1 dz dr

= −
∫ ∞

0

∫
|z|=1

f(x+ rz)
η′(r)

Cd
dz dr

= −
∫ ∞

0

η′(r)Lf (x; r) dr.

That’s what we are trying to prove.

The key features of this lemma are that h is nonnegative, and that we
have an explicit formula for it. In the rest of this section we’ll see how to
choose η to get some useful information out.

5.5 The difference of averages on two concentric balls:
choosing functions for approximation

Let Af (x; r) be the average of f on Br(x),

Af (x; r) :=
1

λ(Br)

∫
Br(x)

f(y) dy.

Let 0 < t < s. We construct explicit functions ηm to use in Lemma 9 with

Af (r; t)−Af (r; s) = lim
m→∞

∫ ∞
0

η′m(r)Lf (x; r) dr (1)

It makes intuitive sense that such functions should exist. We know from
the note for Lemma 9 that we can use any smooth signed weight function
supported in (0, R) with total weight zero where the positive part of the
weight is left of the negative weight, by integrating it. But

Af (r; t) =
1

λ(Bt)

∫
Bt(x)

f(y) dy

=

∫ t

0

∫
|z|=1

f(x+ rz) rd−1 dz dr

/∫ t

0

∫
|z|=1

rd−1 dz dr

=

∫ t

0

drd−1

td
Lf (x; r) dr,

10



so we can write the difference of averages as

Af (r; t)−Af (r; s) =

∫ ∞
0

[
1r<t

drd−1

td
− 1r<s

drd−1

sd

]
Lf (x; r) dr.

Let χ(r) := min{1, rd/td} − min{1, rd/sd}, the integral of the expression in
brackets. Then χ is nonnegative and supported on [0, s], so we can hope to
use it in Lemma 9. It isn’t smooth, and its support goes all the way to zero,
but it should be possible to get around that with approximation.

The main obstacle is that Lf (x; r) might have many singularities. All we
know about it is that

∫ s
0
rd−1|Lf (x; r)| dr <∞:∫ s

0

rd−1|Lf (x; r)| dr =
1

Cd

∫ s

0

rd−1

∣∣∣∣∣
∫
|z|=1

f(x+ rz) dz

∣∣∣∣∣ dr
≤ 1

Cd

∫
Bs(x)

|f(y)| dy

<∞.

If we aren’t careful choosing approximations, we may not be able to prove that
the integrals converge. The following lemma picks approximations carefully
to avoid trouble with Lf (x; r).

Lemma 10. Given 0 < t < s, there are nonnegative functions ηm ∈ C∞c (0,∞)
that converge uniformly to χ(r), satisfy (1), and that satisfy bounds ηm(r) ≤
1r<s min{1, rd/td} and |η′m(r)| ≤ 1r<sdr

d−1/td.

Let w(r) = 1r<1dr
d−1. Let W (r) be the indefinite integral

∫ r
0
w(ρ) dρ =

min{1, rd}. Then χ(r) = W (r/t) −W (r/s). This difference is nonnegative,
because r/t ≥ r/s and W is increasing, and it’s zero for r ≥ s.

Let wm ∈ C∞c (0,∞) be nonnegative smooth functions with supports con-
tained in (0, 1) that increase pointwise to w. Set Wm(r) :=

∫ r
0
wm(ρ) dρ.

Finally, let ηm(r) := Wm(r/t) −Wm(r/s). Again, ηm(r) is nonnegative
because Wm is increasing and constant for r ≥ 1. The first bound holds:

0 ≤ ηm(r) ≤Wm(r/t) ≤W (r/t) = min

{
1,
rd

td

}
.

The bound on the derivative holds:

|η′m(r)| =
∣∣∣∣wm(r/t)

t
− wm(r/s)

s

∣∣∣∣ ≤ max

{
w(r/t)

t
,
w(r/s)

s

}
≤ drd−1

td
.

It still remains to prove that ηm → χ uniformly and that (1) holds.
We can get a uniform bound on the difference

|χ(r)− ηm(r)| ≤ |W (r/t)−Wm(r/t)|+ |W (r/s)−Wm(r/s)|

≤ 2

(∫ R

0

w(ρ) dρ−
∫ R

0

wm(ρ) dρ

)
.

11



The second integral converges to the first one by the monotone convergence
theorem, so maxr |χ(r)− ηm(r)| → 0 and ηm → χ uniformly.

For (1), write the average of f on Bt(x) in terms of Lf :

Af (x; t) =

∫ t

0

drd−1

td
Lf (x; r) dr

=

∫ t

0

lim
m

wm(r/t)

t
Lf (x; r) dr.

The functions (wm(r/t)/t)Lf (x; r) are dominated by d
td
rd−1|Lf (x; r)|, which

is integrable on (0, t) by earlier remarks. Use the dominated convergence
theorem to move the limit outside the integral:

Af (x; t) = lim
m

∫ ∞
0

wm(r/t)

t
Lf (x; r) dr.

Replace t by s and subtract to get (1).

Af (x; t)−Af (x; s) = lim
m

∫ ∞
0

[
wm(r/t)

t
− wm(r/s)

s

]
Lf (x; r) dr

= lim
m

∫ ∞
0

η′m(r)Lf (x; r) dr.

5.6 The difference of averages on two concentric balls:
a formula for signed measures

Lemma 11. Suppose f is locally integrable on Ω and ∇2(f dx) = dν where ν
is a signed measure. Let x ∈ Ω and 0 < t < s < R = d(x,Ωc).

Let χ(r) := min{1, rd/td} −min{1, rd/sd} as above, and let

h(y) :=

∫ ∞
|y−x|

χ(ρ)

Cdρd−1
dρ.

Then
∫
h dν = Af (x; s)−Af (x; t).

Proof. Let ηm be the smooth approximations from Lemma 10. Let hm be the
function provided by Lemma 9 with ∇2(f dx)(hm) = −

∫∞
0
η′m(r)Lf (x; r) dr.

Taking limits on both sides of that identity,

lim
m
∇2(f dλ)(hm) = − lim

m

∫ ∞
0

η′m(r)Lf (x; r) dr

= Af (x; s)−Af (x; t).

The left side of this equation is limm

∫
hm dν, so all we need to do is prove

that limm

∫
hm dν =

∫
h dν.

12



Both hm and h are defined by integrals. Write h(y)−hm(y) as an integral,
take the absolute value, move it under the integral sign, and extend the range
of integration to (0,∞) to get

|h(y)− hm(y)| ≤

∣∣∣∣∣
∫ ∞
|y−x|

χ(ρ)− ηm(ρ)

Cdρd−1
dρ

∣∣∣∣∣ ≤
∫ ∞

0

|χ(ρ)− ηm(ρ)|
Cdρd−1

dρ. (2)

This is a uniform bound. The bounds on the functions ηm from Lemma 10,
and the obvious bound 0 ≤ χ(r) ≤ 1r<sr

d/td, tell us that

|χ(ρ)− ηm(ρ)|
Cdρd−1

≤ 1ρ<s
ρ

td

say that the integrand is dominated by 1|ρ|<sρ/t
d, which is certainly inte-

grable. Lemma 10 also says that ηm(ρ) → χ(ρ) pointwise, so the integrand
converges to zero pointwise. Therefore, by the dominated convergence theo-
rem, the right side of equation (2) converges to zero, and hm → h uniformly.

This is strong enough convergence to make
∫
h dν = limm

∫
hm dν no

matter what signed measure we have, so
∫
h dν = Af (x; s)−Af (x; t).

This lemma lets us find the difference of averages on concentric balls when
we know the Laplacian. Even better, it lets us estimate the difference from
weak estimates on the Laplacian. To do that, we need to know

∫
h dx.

Lemma 12. Let 0 < t < s and x ∈ Ω. With h defined as above,∫
h(y) dy =

1

2(d+ 2)
(s2 − t2).

Proof. We know what the function is, so the proof is straightforward. First,∫
Rd

h(y) dy =

∫
Rd

[∫ s

|x−y|

χ(ρ)

Cdρd−1
dρ

]
dy

=

∫ ∞
0

[∫ s

r

χ(ρ)

Cdρd−1
dρ

]
Cdr

d−1 dr

=

∫ s

0

χ(ρ)

ρd−1

[∫ ρ

0

rd−1 dr

]
dρ

=

∫ s

0

χ(ρ)
ρ

d
dρ.

We have χ(ρ) = max{1, ρd/td} −max{1, ρd/sd}, so∫ s

0

χ(ρ)
ρ

d
dρ =

[∫ t

0

ρd+1

dtd
dρ+

∫ s

t

ρ

d
dρ

]
−
∫ s

0

ρd+1

dsd
dρ

=
t2

d(d+ 2)
+
s2 − t2

2d
− s2

d(d+ 2)

=
1

2(d+ 2)
(s2 − t2).

13



Remark. We can now get strong bounds on Af (x; s)−Af (x; t) from a very
small amount of information about ∇2(f dλ).

Suppose ∇2(f dλ) is a signed measure dν where |ν| ≤ Cλ. Then

|Af (x; s)−Af (x; t)| ≤
∣∣∣∣∫ h dν

∣∣∣∣ ≤ C ∫ h dλ =
C

2(d+ 2)
(s2 − t2),

so limt→0Af (x; t) exists for every x ∈ Ω. Let the limit be f̄(x). Take t → 0
above to get the inequality |Af (x; s) − f̄(x)| ≤ Cs2/2(d + 2), which is not
only a uniform bound, it’s quadratic in the radius s, just as strong as if we
were in one dimension and knew that f ∈ C2 and |f ′′| ≤ C.1

5.7 Subharmonic on average

A function is a limit of radial averages at x if it is integrable in a neighbour-
hood of x and the limit limr→0Af (x; r) exists and is equal to f(x). This is
strictly weaker than continuity at a point.

It’s also weaker than subharmonicity:

Lemma 13. If a function is subharmonic at a point, it is a limit of radial
averages at that point.

Proof. Let f be subharmonic at x. Then f(x) ≤ Af (x; r) for r < d(x,Ωc),
so f(x) ≤ lim infr→0Af (x; r), but f is upper semicontinuous at x, so

f(x) = lim
r→0

max
Br(x)

f(y) ≥ lim sup
r→0

Af (x; r).

Therefore the lim inf and lim sup are equal, and f(x) = limr→0Af (x; r).

We say that a function is subharmonic on average at x if it is a limit of
radial averages at x and satisfies condition (b) in the definition of subhar-
monicity. That is, there exists some small ε > 0 so that

lim
r→0

Af (x; r) = h(x) ≤ inf
0<r<ε

Af (x; r).

Here is an example that shows that this definition is strictly weaker than
subharmonicity. Let f = 1

21x=0 +1x>0. This is equal to its average on small
balls, so it is certainly subharmonic on average, but it’s far from being a
subharmonic function. For example, f(1) = 1, but Af (1; 2) = 3/4 < 1.

What has gone wrong? This is not a very regular function: the Laplacian
is h 7→ −h′(0), which is not even a signed measure. We will need a certain
amount of regularity to get useful information.

This example also shows that we must be careful: convolutions of sub-
harmonic on average functions with continuous functions are not necessarily
subharmonic, even if the continuous function has a small support.

1Exercise: prove that we do really have | 1
2s

∫ s
−s f(y) dy − f(0)| ≤ Cs2/6 if |f ′′| ≤ C.
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5.8 If the Laplacian is a signed measure, and subhar-
monic on average on a measurable set, then the
signed measure is positive on that set

If f is regular enough that ∇2(f dλ) is a signed measure, then we can get a
very precise result about subharmonicity on average.

Theorem 14. Suppose ∇2(f dλ) = dν where ν is a signed measure. If f is
limit-subharmonic on a measurable set E, then E is a positive set for ν.

Proof. Suppose E is not positive. Let E′ be a subset of E with ν(E) < 0.
By Lemma 15 (which we postpone until later), ∃x ∈ E′ with

lim sup
t→0

ν(Bt(x))

λ(Bt(x))
= −c < 0.

Let s > 0 be small enough that ν(Bt(x))/λ(Bt(x)) < −c/2 for t < s and
the subharmonic inequality holds for Bs(x).

Lemma 11 and Corollary 12 tell us that, for each 0 < t < s, there is a
nonnegative radially symmetric continuous function hs,t with∫

hs,t(y) ν(dy) = Af (x; s)−Af (x; t).

Also, hs,t is supported on Bs, radially symmetric, and it’s decreasing as y
gets farther from x. So {y : hs,t(y) > α} is a ball of radius ≤ s around x, and∫

hs,t dν =

∫ s

0

ν{hs,t > α} dα

≤ − c
2

∫ s

0

λ{hs,t > α} dα

= − c
2

∫
hs,t dλ = − c

4(d+ 2)
(s2 − t2).

In the last step we have used Lemma 12. Take t → 0 and use the fact
that Af (x; t) → f(x) as t → 0, because f is a limit of radial averages at
x ∈ E.

− c

4(d+ 2)
s2 ≥ lim sup

t→0

∫
hs,t dν = Af (x; s)− f(x) ≥ 0

which is a contradiction. Therefore, E is positive.

Here is the lemma we are owed:

Lemma 15. If E ⊆ Ω is measurable and ν is a signed measure with ν(E) < 0,
then there is a point x ∈ E with

lim sup
t→0

ν(Bt(x))

λ(Bt(x))
< 0.

15



Proof. Let µ = |ν|+ λ, and f = dν/dµ. Then
∫
f dµ = ν(E) < 0, so f < 0

on a set of µ-positive measure.
By the Lebesgue-Besicovitch differentiation theorem,

lim
t→0

ν(Bt(x))

µ(Bt(x))
= f(x)

except on a set N with µ(N) = 0. And {f < 0} has µ-positive measure, so
there is some point x in {f < 0} ∩N c.

For that point, we have ν(Bt(x))/µ(Bt(x)) → f(x) < 0, so ν(Bt(x)) is
negative for small enough t, and λ ≤ µ, so

lim sup
t→0

ν(Bt(x))

µ(Bt(x))
≤ lim sup

t→0

ν(Bt(x))

λ(Bt(x))
< 0.

That proves the result.

Note. The regularity is important for this lemma: if ∇2(f dλ) is a signed
measure, then it’s positive on the set where it’s subharmonic on average.

For the example before, if we set f = 1
21x=0 +1x>0 again, the function is

subharmonic on average everywhere, but ∇2(f dλ) : h 7→ −h′(0) isn’t positive
(and so it isn’t a signed measure).

Exercise. What exactly breaks down when ∇2(f dλ) isn’t a signed measure?
How much of the proof still works for f = 1

21x=0 + 1x>0?

5.9 On an open set, positivity implies subharmonicity
Now we will go in the other direction, from information about the distribution
to subharmonicity.

Lemma 16. Let f be locally integrable on an open set Ω. Suppose ∇2(f dλ)
is positive on Ω. Then there is a subharmonic f̄ on Ω with f̄ = f a.e. on Ω.

Proof. Let x ∈ Ω and t < s < d(x,Ωc). If hs,t is as in Theorem 14, then
Theorem 11 tells us that Af (x; s) − Af (x; t) = ∇2(f dx)(h) ≥ 0, so Af (x; t)
decreases to a limit (possibly −∞) as t→ 0. Let f̄ be that limit:

f̄(x) := lim
s→0

Af (x; s) = inf
s>0

Af (x; s).

The Lebesgue differentiation theorem tells us that Af (x; s)→ f(x) for almost
every x, so f = f̄ almost everywhere. We claim f̄ is subharmonic on Ω.

For 0 < s < d(x,Ωc),

f̄(x) ≤ Af (x; s) = Af̄ (x; s),

so f̄ satisfies (b) in the definition of subharmonicity.
We prove that it also satisfies (a), upper semicontinuity. Let xn ∈ Ω let

r > 0 with B2r(x) ⊆ Ω. Eventually xn ∈ Br(x). Decompose

f̄(xn) =
[
f̄(xn)−Af (xn; r)

]
+
[
Af (xn; r)−Af (x; r)

]
+Af (x; r).
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The first summand is nonpositive by definition. The second one converges to 0
as n → ∞, because Af (·; r) is continuous where it is defined.2 Take the lim
sup of both sides as n→∞ and then take r → 0 to get lim sup f̄(xn) ≤ f̄(x).
So f̄ is upper semicontinuous also and therefore subharmonic.

6 Solving the quadrature set problem
From now on, suppose w is a bounded, properly supported weight function.3

We will prove the existence of a quadrature set for w. We start by posing
a minimization problem, extract the quadrature set from the solution, and
then prove that it is a quadrature set.

Definition. If ψ and ψ′ are distributions, then we say that ψ ≤ ψ′ if ψ′ − ψ
is a positive distribution.

Problem. Within the class of functions that are limits of radial averages
on all Rd, find the smallest nonnegative f with ∇2(f dλ) ≤ (1− w) dλ.

We’ll find a function that’s less than or equal to than any other such
function pointwise, so we don’t need to be specific about “smallest.”

Any function can be set to zero on a null set without changing the dis-
tributional Laplacian, so without at least a weak continuity condition, no
function can be minimal except for zero, which is only a solution if w ≤ 1 a.e.

6.1 Intuitive justification for this problem
Suppose we are in d = 2 for ease of imagination. Arrange clay on a metal
plate so that the height of the clay at x is w(x). Then crush the clay down
to height 1 by applying pressure to it from above. The result is a new thin
sheet of clay of roughly uniform height and a certain shape Q.

Let f(x) be the ‘total pressure’ at x. Suppose the total net flow of clay
through a point is (proportional to) the gradient of the pressure, −∇f(x).
By conservation of mass, ∇ · (−∇f(x)) = −∇2f(x) will be the total decrease
in the level of clay at x. The final level of clay cannot be more than 1, so we
have the inequality w +∇2f ≤ 1 or ∇2f ≤ 1− w.

When we push on the clay, it flows out radially, with no preferred direction.
Let s be any integrable subharmonic function on the final shape Q. When
the clay is pressed down at a point within Q, the clay moves out radially, and
subharmonic functions are less than or equal to their averages on balls in Q,
so the integral of s against the mass distribution does not decrease.

We ask for the smallest nonnegative f because the total pressure can’t be
negative, but we want to push the clay as little as possible in the hope that

2This follows from general properties of convolutions, or it can be proven directly by
writing Af (r;xn)−Af (r;x) =

∫
(1Br(xn) −1Br(x)) f dy and observing that the integrand

converges pointwise to zero almost everywhere and is dominated by |f |.
3Recall from Section 2.4 that a weight function is properly supported if it is at least 1

on an open set Ω and identically zero outside Ω.
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the set where pressure is applied, {f > 0}, will be contained in the final shape
of clay. If all pressure is applied within Q, then the integral of s against the
mass distribution never decreases as we go from w(x) to 1Q, so we get the
quadrature set property,

∫
s(x)w(x) dx ≤

∫
s(x)1Q(x) dx.

We will see that this nonsense really works, and Q := {f > 0} ∪ {w ≥ 1},
the area where we applied pressure plus the area where there was already clay
on the table at the start, is indeed a quadrature set.

6.2 Newtonian potentials
If w is a bounded, compactly supported weight function, let the Newtonian
potential of w be the convolution of w with the free-space Green’s function:

Nw(y) :=

∫
Rn

G(x, y)w(x) dx.

This is really a convolution because G(x, y) is a function of x− y only.
The convolution of a bounded function with an integrable function is

continuous, so Nw ∈ C(Rn), and the first derivative is continuous also:

∂Nw

∂yi
(y) =

∂

∂yi

∫
Rn

G(x, y)w(x) dx =

∫
Rn

∂G

∂yi
(x, y)w(x) dx.

Green’s function is symmetric in the variables, so if h ∈ C∞c , then∫
Nw(y)∇2h(y) dy =

∫
w(y)N∇2h(y) dy

=

∫
−h(x)w(x) dx

by Lemma 1. Therefore ∇2Nw = −w for any such weight function w.
We can make this a bit more general. If w is bounded and constant outside

a compact set, let c be the constant, and define Nw := N(w − c) + c
2d |x|

2.
Again ∇2(−Nw) = w.

6.3 Minimization over superharmonic functions
We use Newtonian potentials to transfer the minimization problem to the
theory of superharmonic functions.

For the sake of completeness:

Definition. If f is a function, it’s superharmonic if −f is subharmonic.

The theorems about subharmonic functions carry over to superharmonic
functions with a minus sign. In particular, we have these three statements:

Theorem −5. If f is a superharmonic function on an open set Ω, then ∇2f
is a negative distribution.

Lemma −13. A superharmonic function is a limit of radial averages.
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Corollary −16. If the Laplacian of f is a negative distribution on an open
set, then f is equal almost everywhere to a superharmonic function.

This is enough to turn the minimization problem into a question about
superharmonic functions.

Theorem 17. The minimization problem is equivalent to:

Find the smallest nonnegative function f on Rd with the property that
the sum f +N(1− w) is superharmonic everywhere in Rd.

Proof. The minimization problem asks us to find the smallest function f ≥ 0
which is a limit of radial averages everywhere with ∇2f ≤ 1 − w. We will
show that the two classes of functions are the same: f is a limit of radial
averages with ∇2f ≤ 1− w if and only if f +N(1− w) is superharmonic.

Suppose f is a limit of radial averages and ∇2f ≤ 1− w. Then

∇2[f +N(1− w)] = ∇2f − 1 + w ≤ 0.

By Corollary −16, f +N(1− w) = f̄ a.e. for some superharmonic f̄ .
Averaging is linear, so f + N(1 − w) is a limit of radial averages, and

so is the superharmonic function f̄ by Lemma −13. They are equal almost
everywhere, so Af+N(1−w)(x; r) = Af̄ (x; r) for every choice of x ∈ Rd and
r > 0. Take r → 0 to see that f +N(1− w) = f̄ is indeed superharmonic.

Suppose f +N(1− w) is superharmonic. By Theorem −5,

∇2f − 1 + w = ∇2
[
f +N(1− w)

]
≤ 0,

and ∇2N = −id, so ∇2f ≤ 1− w. By Lemma −13, f + N(1− w) is a limit
of radial averages, and N(1− w) is continuous, so by linearity f is a limit of
radial averages with ∇2f ≤ 1− w.

The two conditions are therefore equivalent.

We can now use the fundamental convergence theorem for superharmonic
functions to find a minimum.

Theorem 18 (Fundamental convergence theorem).
Let Γ be a family of superharmonic functions defined on an open subset of

Rd and locally uniformly bounded below. Let u(x) be the pointwise infimum
of all the functions in Γ. Let u+(x) = min{u(x), lim infy→x u(y)}.

Then u+ = u almost everywhere, and u+ is superharmonic.

Proof. See for example Section 1.III.3 of Doob [1].

Corollary 19. Let π be a measurable, bounded function on Rd that is constant
outside a compact set. Then there is a smallest f ≥ 0 with the property that
f +Nπ is superharmonic.
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Proof. Let Γ = {u : u is superharmonic, γ ≥ Nπ}. The functions in this
class are uniformly bounded below on any compact set K by minK Nπ.

Apply the fundamental convergence theorem to Γ to get a superharmonic
function u+ less than or equal to every function in Γ. Then u+ ∈ Γ:

u+(x) = min{u(x), lim inf
y→x

u(y)}

≥ min{Nπ(x), lim inf
y→x

Nπ(y)}

≥ Nπ(x)

by continuity of Nπ(x), so it obeys the inequality, and it’s superharmonic.
Set f := u+−Nπ. Then f ≥ 0 and f +Nπ is superharmonic, and if that

is true for g, then g +Nπ ∈ Γ and f +Nπ = u+ ≤ g +Nπ, so f ≤ g.

Corollary 20. There is a smallest function f ≥ 0 that is a limit of radial
averages and satisfies ∇2(f dx) ≤ (1− w) dλ.

Proof. Combine Corollary 19 with Theorem 17.

In the next section, we will characterize the Laplacian of the minimal
function, and discover that there is a quadrature set hiding inside it.

6.4 Finding the Laplacian ∇2(f dx)

Suppose w is a properly supported weight function. Let f be the function
promised by Corollary 20. Then ∇2(f dx) − (1 − w) dλ is a negative distri-
bution, so by Corollary 6, it must be −dµ for some locally finite measure µ.
Therefore ∇2(f dx) is locally a signed measure ν with dν = (1− w) dλ− dµ.

Let A := {f > 0}. Then dµ = (1 − w)1Ac dλ and dν = (1 − w)1A dλ,
which we prove by dividing the space up into three pieces: the original set,
the complement of its closure, and the topological boundary between them.

Lemma 21. On the open set A = {f > 0}, dµ = 0 and dν = (1− w) dλ.

Proof. Let γ = f + Nu as before, so ∇2(γ dλ) = −dµ. Let x ∈ A, so
f(x) > 0 and γ(x) > Nu(x). In that inequality, the left-hand function is
superharmonic and the right-hand one is continuous, so both are limits of
radial averages. Choose a small radius r > 0 so that

min
y∈Br(x)

γ(y) > max
y∈Br(x)

Nu(y).

Let

γ′ =

{
γ outside Br(x)

Poisson integral of γ|∂Br(x) on Br(x).

It’s well-known that this is still a superharmonic function, and it’s less than
or equal to γ. Also γ′ ≥ Nu, because, by the choice of r,

γ′(y) ≥ min
y∈Br(x)

γ(y) > Nu(y)
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for y in the ball Br(x), and γ′(y) = γ(y) ≥ Nu(y) for all other y. But γ is
the minimal superharmonic function with γ ≥ Nu, so γ = γ′.

In particular γ is harmonic on the ball Br(x). Therefore ∇2γ = 0 on that
ball, and dν = ∇2f = −∇2Nu = (1 − w) dλ. That is true on a ball on a
neighbourhood of every point x ∈ A, so it’s true on all of A.

The second piece is trivial:

Lemma 22. On the open set A
c
, dν = 0.

Proof. The function f is identically zero there, so ∇2(f dx) = 0 on A
c
.

The tricky part is the boundary ∂A. We can use the Lebesgue density
theorem to get rough bounds on ν|∂A:

Theorem 23. If E ⊆ ∂A, then 0 ≤ ν(E) ≤ λ(E).

Proof. We have ∇2f ≤ (1− w) dλ, so dν ≤ dλ. That’s the upper bound.
By definition, f+N(1−w) is superharmonic, and N(1−w) is continuous,

so f is a limit of radial averages. If x is any point in ∂A, then

f(x) = 0 ≤ 1

λ(Br)

∫
Br(x)

f(y) dy.

Therefore, f is subharmonic on average on ∂A. Use Corollary 14 on −f to
get ∇2f = dν ≥ 0 on ∂A. That’s the lower bound.

We summarize the last three theorems:

Corollary 24. The measure ν is absolutely continuous with respect to µ
on Rd, and ν = (1− w)λ on A, ν = 0 on A

c
, and 0 ≤ ν ≤ λ on ∂A.

Let ρ := dν/dµ be some version of the Radon-Nikodym derivative with
ρ = 1 − w on A and ρ = 0 on A

c
. If ∂A is a set of measure zero, then we

already know ρ almost everywhere, so we know ∇2f = ρ dλ = (1− w)1A dλ.
If not, we must do more work.

Let’s start by proving a lemma that says that bounds on ρ give us strong
bounds on f near its zeroes.

Lemma 25. Suppose ∇2f = ρ dλ where 0 ≤ ρ ≤ 1, and f ≥ 0.
If f(x) = 0, then f(y) ≤ max |ρ|O(|y − x|2) where the implicit constant

in the O-notation depends only on the dimension d.

Let Af (y; r) denote the average of f on Br(y), as in Lemma 16. Choose
t < s. Corollary 11 tells us that Af (y; s)−Af (y; t) = ∇2(f dx)(h) =

∫
hρ dλ

for a certain h ≥ 0, and by Corollary 12,
∫
h dλ = (s2 − t2)/2(d+ 2). So,

|Af (y; s)−Af (y; t)| ≤
∣∣∣∣ ∫ h dν

∣∣∣∣ ≤ max |ρ|
∫
h dλ =

max |ρ|
2(d+ 2)

(s2 − t2).

Take t→ 0 to get |Af (y; s)− f(y)| ≤ max |ρ|O(s2).
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We can use the estimate to compare Af (y; s) and f(y), and we can also
use it to estimate Af (x; 2s) = |Af (x; 2s)− f(x)| = O(s2). Then

Af (y; s) =
1

λ(Bs)

∫
Bs(z)

f(z) dz ≤ 1

λ(Bs)

∫
B2s(x)

f(z) dz = 2dAf (x; 2s),

so f(y) = Af (y; s) +O(s2) ≤ 2dAf (x; 2s) +O(s2) ≤ O(s2).

Theorem 26. If ∇2f = dν = ρ dλ with 0 ≤ ρ ≤ 1 and f ≥ 0, and f ≡ 0 on
the complement of an open set A, then ρ = 0 almost everywhere on ∂A.

Proof. Suppose not: ν(∂A) > 0. Then the Lebesgue measure of the bound-
ary ∂A must certainly be positive. By the Lebesgue density theorem,

lim
r→0

λ(Br(x) ∩ ∂A)

λ(Br(x))
= 1

for almost every point in ∂A. Let N be the null set of points for which that
isn’t true, and fix x ∈ ∂A \ N . Then λ(Br(x) ∩ A) = o(1)λ(Br) as r → 0,
although the constant in the o-notation depends on the point x.

By the last theorem, f(y) = O(|y−x|2), but f = 0 on Ac, so the only con-
tributions to the average Af (x; s) are from the points in Br(x)∩A. Therefore

Af (x; s) =
1

λ(Bs)

∫
Bs(x)∩A

f(y) dy =
λ(Bs(x) ∩A)

λ(Bs)
O(s2) = o(s2)

for x ∈ ∂A \N . But
∫
∂A
ρ(y) dy = ν(∂A) > 0, so by the ordinary Lebesgue

differentiation theorem applied to ρ, there is a set of full measure in ∂A with

lim inf
r→0

ν(Br(x))

λ(Br)
≥ lim inf

r→0

1

λ(Br)

∫
Br(x)∩∂A

ρ(y) dy > 0.

Let c be that lim inf. For small r, we must have ν(Br(x))/λ(Br) > c/2. Pick
t ∈ (0, s), construct the function χ in Lemma 11, and repeat the reasoning in
the proof of Theorem 14 to get the inequality

∫
χdν ≥ (c/2)

∫
χdλ.

Then the left-hand side of that inequality isAf (x; s)−Af (x; t) by Lemma 11,
and the right-hand side is c

4(d+2)Cd
(s2 − t2) by Lemma 12, so

Af (x; s)−Af (x; t) ≥ c

4(d+ 2)Cd
(s2 − t2).

Take t→ 0 to get the lower bound Af (x; s) ≥ (positive constant)× s2.
This contradicts the estimate Af (x; s) = o(s2) for x ∈ ∂A \ N , so our

assumption was wrong, and the ν-measure of the boundary must be zero.

Corollary 27. The Radon-Nikodym derivative ρ is equal a.e. to (1− w)1A.
The Laplacian ∇2(f dx) = dν = ρ dλ is (1− w)1A dλ.

Proof. The theorem tells us that ρ = 0 almost everywhere on ∂A, and we’ve
already chosen a version with ρ = (1− w) on A and = 0 on A

c
.
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6.5 A quadrature set for Green’s functions
We are now able to exhibit the quadrature set, although we’re only about
three-quarters of the way to the proof that it really is one.

In the last section, we discovered that, if f is a solution for the minimiza-
tion problem, then ∇2(f dλ) = (1− w)1A dλ where A = {f > 0}.

Theorem 28. If f is as above, then f = N
[
(w − 1)1A

]
.

Proof. Denote (w − 1)1A by ϕ. Then

∇2((f −Nϕ) dλ) = ∇2(f dλ) + (w − 1)1A = 0.

Lemma 16 tells us that f − Nϕ is harmonic4. We must show that it is
zero, and we do that with Liouville’s theorem.

First, A is bounded, because if r := max{|x| : w(x) > 0}, one candidate
for the minimization problem is

fb(x) := N
[
(maxw)1Br

− 1B
(maxw)1/dr

]
.

This has a suitable Laplacian, is nonnegative5, and is zero outsideB(maxw)1/dr,
so f ≤ fb must also be zero outside that ball and A ⊆ {|x| < (maxw)1/dr}.

Let h ∈ C∞c (Rd), h ≡ 1 on A. (This is allowed because A is bounded, by
the last paragraph.) Then ∇2h = 0 in A, and ϕ ≡ 0 outside A, so we get
0 =

∫
f ∇2h dλ = ∇2f [h] =

∫
ϕhdλ =

∫
ϕdλ, and the integral of ϕ is zero.

As x→∞, G(x, y)−G(x, 0) converges to zero, so

Nϕ(x) =

∫
Rd

G(x, y)ϕ(y) dy =

∫
Rd

[
G(x, y)−G(x, 0)

]
ϕ(y) dy → 0.

And f is zero outside A, so f−Nϕ converges to zero as x→∞. It’s harmonic,
so it must be identically zero by Liouville’s theorem. Therefore f = Nϕ.

Corollary 29. Let Q = A ∪ {w ≥ 1}.
Then ϕ := (w−1)1A is equal to w−1Q almost everywhere, and N(1Q−w)

is nonpositive everywhere and zero outside Q.
4It tells us that f − Nϕ and Nϕ − f are equal almost everywhere to subharmonic

functions s and s′, and all four functions are limits of radial averages, so both equalities
are true everywhere: f −Nϕ = s = −s′, so f −Nϕ is subharmonic and superharmonic.

5The average of Green’s function G(x; y) over a sphere |y| = r is G(x; 0) = G(|x|e1; 0)
if |x| > r and constant on the ball |x| ≤ r, because it’s harmonic in both variables except
at x = y. Green’s function isn’t singular enough for there to be a discontinuity when x is
moved through the sphere, so the constant must be G(re1; 0). Therefore

N [1Br(0)](x) =

∫
Br(0)

G((|x| ∨ |y|)e1; 0) dy.

It follows from this that N [(maxw)1Br(0)] = N [1(B(maxw)1/dr)] =
∫
Br

G(x; 0) dy outside
the ball of radius (maxw)1/dr, so fb = 0 in that region. Green’s function decreases with
increasing radius, and some thought about how the integrals change shows that the first
potential is strictly larger everywhere inside the ball. Therefore fb > 0 there.
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Proof. We know 1−w ≥ 0 in the sense of distributions on Ac, by Theorem so
w ≤ 1 almost everywhere. But w never takes values between 0 and 1, so
{w = 0} and {w = 1} cover almost all of Ac, and

n = 1A − w + w1Ac

= 1A − w + 1{w≥1}∩Ac almost everywhere
= 1Q − w.

The two functions are equal a.e., so N(w−1Q) = Nϕ = f , and by definition
f is nonnegative everywhere and is zero outside A ⊆ Q.

This set Q is our quadrature set, and we’ll prove that in the next section.

6.6 Extending to all integrable superharmonic functions
Here is the grand climax of this chapter, Sakai’s Lemma 5.1 [6]. For com-
pleteness, we present the proof and various minor results that are used.

Theorem 30 (Sakai’s Lemma 5.1). Let Q be an open bounded set. If there
is a function ϕ ∈ L∞(Q) with Nϕ ≥ 0 on Q and Nϕ = 0 on Qc, then∫

sϕ dy ≤ 0

for every integrable subharmonic function s on Q.

Proof. The basic idea is approximation, but it’s delicate and relies on a tight
estimate of the modulus of continuity of Nϕ.

Let s be an integrable subharmonic function on Q. Let sn := s ∗ ψn be
as defined in Theorem 5. As before, these are smooth and subharmonic, and
they are defined on the set {x : d(x,Ωc) > 1/n}. On any compact subset
of Q, they converge to s from above and in L1.

Let hj ∈ C∞c (Q) be test functions 0 ≤ hj ≤ 1 converging pointwise to 1.
We will choose them carefully later. Each shj is supported on some compact
subset of Q, so snhj → shj in L1 on that subset. Therefore:∫

sϕ dy = lim
j→∞

∫
shjϕdy = lim

j→∞

[
lim
n→∞

∫
snhjϕdy

]
.

Using ∇2N = −id and the fact that snhj is a test function,∫
snhjϕdy = −

∫
snhj∇2Nϕdy = −

∫
∇2(snhj)Nϕdy.

Our goal now is to show that this integral is ≥ −C0/j if hj and C0 > 0
are chosen appropriately; then the double limit must be nonpositive.
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A smooth subharmonic function has positive Laplacian, so ∇2sn ≥ 0, and
we are assuming that Nϕ ≥ 0. So (∇2sn)hjNϕ ≥ 0, and we will have

∇2(snhj)Nϕ = (∇2sn)hjNϕ+ 2(∇sn · ∇hj)Nϕ+ sn(∇2hj)Nϕ

≥ 2(∇sn · ∇hj)Nϕ+ sn∇2hjNϕ

= 2∇ · (sn∇hjNϕ)− 2sn(∇hj · ∇Nϕ)− sn∇2hjNϕ.

Integrate over Rd. The leftmost term on the right-hand side is the divergence
of a compactly supported differentiable function, so the integral is zero.∫

∇2(snhj)Nϕdy ≥ −
∫

2sn(∇hj · ∇Nϕ) dy −
∫
sn∇2hjNϕdy. (3)

We’ll show that both those integrals are small enough that the bound holds.

A bound on |∇Nϕ| and Nϕ. For y ∈ Ω, let δ = d(y,Ωc), and pick a
point x ∈ Ωc with d(y, x) = δ. By Lemma 34 below, there is C > 0 with∣∣∇Nϕ(y)

∣∣ =
∣∣∇Nϕ(y)−∇Nϕ(x)

∣∣ ≤ Cδ log 1/δ

if δ = |y − x| is sufficiently small. That also gives us a bound on Nϕ(y):

|Nϕ(y)| = |Nϕ(y)−Nϕ(x)| ≤
∫ δ

0

Ct log 1/t dt ≤ C

2
δ2 log 1/δ.

Choice of hj. We now choose test functions so that |∇hj ||∇Nϕ| will be
small, using the following lemma. The key is that the reciprocal of the bound
on |∇Nϕ(y)|, namely 1/(Cδ log 1/δ), has infinite integral near δ = 0.

Lemma 31 (Hedberg, [3], Lemma 4). There is a sequence hj of smooth
test functions supported on Ω with 0 ≤ hj ≤ 1 everywhere, hj ≡ 1 when
d(x,Ωc) > 1/j, and if we denote δ := d(y,Ωc),∣∣∇hj(y)

∣∣ ≤ 1/(jδ log 1/δ),

∣∣∣∣ ∂2

∂yi∂y`
hj(y)

∣∣∣∣ ≤ 3/(jδ2 log 1/δ).

Proof. Let ψ(t) = 1/(t log 1/t), so |ψ′(t)| ≤ 2/(t2 log 1/t) for t < 1/e.
Let ηj ∈ C∞c (0, 1/j) be chosen so that 0 ≤ ηj(t) ≤ ψ(t)/j and |η′j(t)| ≤

|ψ′(t)|/j, but so that
∫ 1/j

0
ηj(t) dt = 1. This is possible because ψ(t), ψ′(t)

have infinite integral on (0, 1/j). Let Hj(t) =
∫ t

0
ηj(τ) dτ .

Let ∆Ω(y) be the smooth distance function from Stein §VI.2 Theorem
2 [7], quoted below as Lemma 35. It’s comparable to the distance δ(y) =
d(y,Ωc), in the sense that c1d(y,Ωc) ≤ ∆Ω(y) ≤ c2d(y,Ωc) for some constants
c1, c2. As in the lemma, we may take c2 = 1 and Bα = 1 for |α| ≤ 2.

Set hj := Hj(∆Ω(y)). Then |∇∆Ω| ≤ 1 and |∂2∆Ω/∂xi∂xl| ≤ 1/δ, so
(with some calculation) we see that the gradient of hj is bounded in L2-norm
by ψ(t)/j and each second derivative is bounded in absolute value by∣∣∣∣ηj(∆(y))

∂2∆Ω

∂xi∂xl
+ η′j(∆(y))

∂∆Ω

∂xi

∂∆Ω

∂xl

∣∣∣∣ ≤ 3

jδ2 log 1/δ
.
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Conclusion. We have |∇hj | ≤ 1/(jδ log 1/δ) and |∇2hj | ≤ 3d/(jδ2 log 1/δ).
And both functions are zero outside {x : d(x,Ωc) < 1/j}. Therefore,

|∇hj ||∇Nϕ| ≤ C/j and |∇2hj ||Nϕ| ≤ 3Cd/j

for large enough j, so both integrals in equation (3) are O(1/j):

lim sup
n→∞

∣∣∣∣∫ 2sn(∇hj · ∇Nϕ) dy

∣∣∣∣ ≤ lim sup
n→∞

2C

j

∫
hj>0

|sn| dy

=
2C

j

∫
hj>0

|s| dy

lim sup
n→∞

∣∣∣∣∫ sn(∇2hjNϕ) dy

∣∣∣∣ ≤ lim sup
n→∞

3Cd

j

∫
hj>0

|sn| dy

=
3Cd

j

∫
hj>0

|s| dy.

Set C0 = (2 + 3d)C. Then, as promised earlier,
∫
snhjϕdy ≥ −C0/j.

Take n→∞ and then take j →∞ to see that∫
sϕ dy = − lim

j→∞
lim
n→∞

∫
∇2(snhj)Nϕdy ≤ 0

by the earlier calculation.

We therefore finally have the theorem:

Theorem 32. Q = {f > 0} ∪ {w ≥ 1} is a quadrature set for w.

Proof. By Corollary 29, N(w − 1Q) is nonnegative and zero outside Q, so
we can use Theorem 30 with ϕ = w − 1Q. That tells us that, if s is any
integrable subharmonic function on Q, then

∫
sϕ dy =

∫
s(w − 1Q) dy ≤ 0,

which is exactly the quadrature set property.

Corollary 33.
If w is bounded and properly supported, there is a quadrature set for it.

6.7 Denouement 1: log-Lipschitz continuity
We owe two lemmas that we must prove. First, a lemma about the modulus
of continuity of the Newtonian potential, which we use to bound both the
potential and its first derivative.

The lemma states, roughly, that ∇Nϕ is very close to being Lipschitz.

Lemma 34 (Günther, [2], §13). Suppose ϕ is bounded and measurable and
zero outside a bounded set E. If y, y′ ∈ Rd and |y − y′| = ε, then∣∣∣∣∂Nϕ∂yi

(y)− ∂Nϕ

∂yi
(y′)

∣∣∣∣ = O

(
ε log

1

ε

)
.

The constant in the O-notation depends only on max |ϕ| and diamE.
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Proof. Write both terms as derivatives of integrals, move them both under
the same integral sign, and move the derivative inside the integral, to get∣∣∣∣∂Nϕ∂yi

(y)− ∂Nϕ

∂yi
(y′)

∣∣∣∣ =

∣∣∣∣∫
Ω

[
∂G

∂yi
(x, y)− ∂G

∂yi
(x, y′)

]
ϕ(x) dx

∣∣∣∣ .
This is justified because ∂G/∂yi is locally integrable and ϕ is bounded.

Let A = {x ∈ Ω : |x− y| < 2ε}, and break the integral on the last line up
into

∫
A
and

∫
E\A. The first derivatives of G(x, y) are O(||x− y||1−d), so

∫
A

[
∂G

∂yi
(x, y)− ∂G

∂yi
(x, y′)

]
ϕ(x) dx = O

(∫
B2ε(y)

||x− y||1−d dx

)
= O(ε).

For the part outside of A, we estimate the integrand with derivatives. By
the mean value theorem, there is a point y′′ on the line segment between y
and y′ with ∂G

∂yi
(x, y)− ∂G

∂yi
(x, y′) = (y − y′) · ∇ ∂G

∂yi
(x, y′′). The second deriva-

tives of G(x; y) are O(||x− y||−d), so that dot product is at most

|y − y′| ×
∣∣∣∣∇∂G∂yi (x, y′′)

∣∣∣∣ = O(ε||x− y′′||−d).

When x is not in A, ||x− y|| ≥ 2ε, so

||x− y′′|| ≥ ||x− y|| − ||y − y′′||
≥ ||x− y|| − ||y − y′|| ≥ 1

2 ||x− y||.

Therefore ||x− y′′||−d ≤ 2d||x− y|| and O(||x− y′′||−d) = O(||x− y||−d), and
we have the more concrete bound |(y − y′) · ∇ ∂G

∂yi
(x, y′′)| = O(ε||x − y||−d),

where the bound depends only on max |ϕ|.
If E \A is empty, the integral over it is zero. Otherwise, let Br1 \Br0 be

the minimal closed annulus containing E \ A, i.e. r0 := inf{|x− y| ∈ E \ A}
and r1 := sup{|x− y| : x ∈ E \A}, with r0 ≥ 2ε and r1 ≤ diamE.

We can estimate the integral over E \A by∫
E\A

∣∣∣∣(y − y′) · ∇∂G∂yi (x, y′′)
∣∣∣∣ ϕ(x) dx =

∫
E\A

O(ε||x− y||−d) dx

≤ O
(∫ r1

r0

εr−d Cdr
d−1 dr

)
= O

(
ε log

r1

r0

)
.

The constants in the O-notation depend only on max |ϕ|.
But we know that r1/r0 ≤ diamE/2ε = O(1/ε), so O(ε log r1/r0) =

27



O(log 1/ε). Combine the estimates for A and E \A to get the result:∫
E

[
∂G

∂yi
(x, y)− ∂G

∂yi
(x, y′)

]
ϕ(x) dx =

∫
A

(· · ·)ϕ(x) dx+

∫
E\A

(· · ·)ϕ(x) dx

= O(ε) +O

(
ε log

1

ε

)
= O

(
ε log

1

ε

)
.

This is the result that we want.

6.8 Denouement 2: a smooth approximation of the dis-
tance function

The second lemma that we owe is below. We used it in the proof of Lemma 31
to construct test functions with certain bounds on the first derivatives.

The lemma states that if Ω ⊆ Rn is open, there is a smooth approximation
to the distance function y 7→ d(y,Ωc) which has nicely controlled derivatives.

Lemma 35 (Stein §VI.2 Theorem 2 [7]).
Let Ω be an open set. There exists a function ∆Ω(x) on Ω such that

(a) c1d(x,Ωc) ≤ ∆(x) ≤ c2d(x,Ωc) for x ∈ Ω

(b) ∆Ω(x) is C∞ in Ω and∣∣∣∣ ∂α∂xα∆Ω(x)

∣∣∣∣ ≤ Bαd(x,Ωc)1−|α|

where Bα, c1, c2 are independent of Ω.

Sketch of proof. Ω can be decomposed into disjoint cubes of side length 2−n

in such a way that the size of each cube is less than 1
2 and more than 1

8 of its
distance from the boundary. If we scale up each cube slightly by some factor
1 < β < 2, the result is a locally finite covering of Ω.

Pick h ≥ 0 smooth so that h is 1 on the unit cube and 0 on the cube of
size β > 1. Scale and translate this to get a function hω for each cube ω in
the decomposition which is 1 on ω and 0 on a slightly larger cube around ω.

Let ∆Ω(x) =
∑
ω diam(ω)hω(x)/

∑
ω hω(x). This is locally finite and has

the right properties.

Note. We can choose a function with c2 = 1 and Bα = 1 for |α| ≤ 2
by applying the lemma and then scaling the resulting function down by
max{max|α|≤2Bα, c2}.
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7 Definition of the sum
We have shown that if w ≥ 0 is a bounded, properly supported weight func-
tion, then there is a quadrature set for w. That was Corollary 33.

We can use this fact to finally define the quadrature sum. If A and B are
any two bounded open sets, then the weight function 1A + 1B is bounded
and properly supported, so it has a quadrature set.

Theorem 36. Let A and B be bounded open sets. There is a unique bulky
open set that is a quadrature set for w = 1A + 1B.

Proof. Let w = 1A+1B . This meets the criteria, because A∪B is bounded.
Let C be a quadrature set for that weight; such a set exists and is essentially
unique by Corollary 33 and Corollary 4. Let C ′ ⊇ C be the unique bulky
open set which is essentially equal to C. If s is integrable and subharmonic
on C ′, then s must also be superharmonic on C ⊆ C ′, so∫

A

s dx+

∫
B

s dx ≤
∫
C

s dx =

∫
C′
s dx.

Therefore C ′ is also a quadrature set for w.
No other bulky open set can be a quadrature set, because C ′ is the only

one which is essentially equal to C. This proves the result.

So the smash sum is well-defined.

7.1 The axioms

We will denote the Diaconis-Fulton smash sum by A⊕B.

Theorem 37. This sum satisfies all the axioms, and is always bulky.

Proof. The bulkiness is obvious from the definition. We must check six
axioms. Translation invariance, rotation invariance, and commutativity fol-
low from the uniqueness of the bulky quadrature set and the invariance of
integrals and superharmonicity and bulkiness under those operations.

For example, if s ∈ S+(C + x),∫
C+x

s dλ ≤
∫
A+x

s dλ+

∫
B+x

s dλ,

so C + x is essentially equal to (A+ x)⊕ (B+ x), and both sets are bulky, so
they are really equal. Conservation of mass is easy: ±1 is harmonic, so∫

A⊕B
±1 dλ ≤

∫
A

±1 dλ+

∫
B

±1 dλ

and λ(C) = λ(A) + λ(B).
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Associativity. We show that the sum is associative, which for once is not
trivial. Let A,B,C be bounded open sets. Then if s ∈ S+((A⊕B)⊕ C),∫

(A⊕B)⊕C
s λ ≤

∫
A⊕B

s dλ+

∫
C

s dλ

≤
∫
A

s dλ+

∫
B

s dλ+

∫
C

s dλ.

So (A ⊕ B) ⊕ C is a quadrature set for 1A + 1B + 1C . On the other hand,
the set A⊕ (B ⊕C) is a quadrature set for the same weight, so they’re equal
up to a set of measure zero by Corollary 4. They’re bulky, therefore equal.

Monotonicity. Let A, B be bounded open sets. Then A and A ⊕ B are
quadrature sets for 1A and 1A + 1B respectively, and 1A ≤ 1A + 1B , so
Theorem 3 says A is essentially contained in A⊕ B. The latter set is bulky,
so A is really contained in A⊕B, and we have the first part of monotonicity.

Let A, B, C be bounded open sets with A ⊆ C. Then A⊕B and C ⊕B
are quadrature sets for 1A + 1B ≤ 1C + 1B , so again A⊕B ⊆ C ⊕B.

That finishes the proof that the Diaconis-Fulton smash sum exists and
satisfies all the axioms.
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