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1. INTRODUCTION

Our goal in this supplement is to prove the uniqueness and existence
of quadrature domains for certain weight functions. The proofs follow
Sakai [6].

Notation. Lebesgue measure is denoted by λ . If A and B are two sets,
then A∆B := (A\B)∪(B\A). Two sets are essentially equal if λ (A∆B) = 0,
and A is essentially contained in B if λ (A\B) = 0.

If A,B⊆ Rd , then we set d(A,B) = inf{|x− y| : x ∈ A,y ∈ B}.

1.1. Subharmonic functions. Let Ω⊆ Rd be an open set.
Let Br(x) be the open ball {y ∈ Rd : |y− x|< r}, and Br := Br(0) be the

open ball around zero. If h : Ω→R∪{±∞} is a locally integrable function,
then let Ah(x;r) be the average of the function on the ball Br(x):

Ah(x;r) =
1

λ (Br)

∫
Br(x)

h(y)dy.

This integral is well-defined for sufficiently small r. We will say that a
locally integrable function h is subharmonic at a point x ∈Ω if:

(a) the function is upper semicontinuous at x, so limsupy→x h(y)≤ h(x),
(b) and it is bounded above by its averages on small balls around x:

h(x)≤ Ah(x;r) for all sufficiently small r.

If h is subharmonic at every x ∈ E ⊆Ω, then it is subharmonic on E. If −h
is subharmonic, then h is said to be superharmonic.

1.1.1. Some properties of subharmonic functions. Let Ω be an open subset
of Rd . Then:

• If h ∈C2(Ω), then h is subharmonic on Ω if and only if ∇2h≥ 0 on
Ω.

If h is subharmonic on the whole set Ω, then:
• If F ⊂Ω is compact, then maxx∈F h(x)< ∞, and

max
x∈F

h(x) = max
x∈∂F

h(x).

• If r > 0 is any radius such that Br(x)⊂Ω, then h(x)≤ Ah(x;r).
If h is both subharmonic and superharmonic, then h is harmonic. Every

harmonic function is not just continuous but smooth, and ∇2h≡ 0.

These statements still hold if we replace Ω by a smaller open set. We will
later be able to say some things even for non-open sets.
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1.2. A diffusion relation between weight functions. Say a weight func-
tion is a bounded, nonnegative measurable function on Rd . Let Ω⊂ Rd be
a bounded open set, and let f and g be two weight functions. We will say
that f can diffuse to g through Ω if f ≡ g≡ 0 on Ωc, and

(1)
∫

h f dy≤
∫

hgdy

for every integrable subharmonic function h on Ω. We write f �Ω g.

1.2.1. What does it mean for one weight to diffuse into another? Why do
we refer to this relation as a “diffusion”? We will try to explain using ideas
from probability theory. This section is not logically important to the rest
of the paper, but it might provide some intuitive understanding.

We define a random walk. Choose a probability measure µ on Ω, and
choose measurable ρ1,ρ2, . . . : Ω→ [0,∞) with ρn(x)< d(x,Ωc) for x ∈Ω.

Let X ∼ µ , and let Z1,Z2, . . . be independent uniform points in the unit
ball {x ∈ Rd : |x| < 1}. We set Y0 := X , and Yn := Yn−1 +ρ(Yn−1)Zn. The
walk moves at different speeds depending on its location, but it’s isotropic
in the sense that the direction of each step is uniform, and it never leaves Ω.
We will think of this as a discrete diffusion through Ω.

If h+ is a nonnegative subharmonic function on Ω, then

E[h+(Yn)]≤ E[Ah+(Yn;ρ(Yn))] = E[h+(Yn +ρ(Yn)Zn+1)] = E[h+(Yn+1)]

by Fubini-Tonelli, although some of the integrals may be +∞. Chaining
these inequalities together, we get E[h+(Ym)] ≤ E[h+(Yn)] for m ≤ n and
any nonnegative subharmonic function h+.

Suppose that the random variables Ym,Yn have bounded densities fm, fn.
Let h be any integrable subharmonic function. If hN := h∧(−N), then hN +
N is nonnegative and superharmonic, so we can use the above inequality to
get∫

Ω

hN fm dx = E[hN(Ym)] = E[hN(Ym)+N]−N

≤ E[hN(Yn)+N]−N = E[hN(Yn)] =
∫

Ω

hN fn dx.

Both functions are dominated by a constant times h, so we are justified in
taking N → ∞ and getting the inequality

∫
Ω

h fm dx ≤
∫

Ω
h fn dx for every

integrable subharmonic function h.
So far so good. If we have an isotropic walk as above that stays inside Ω,

and two of the steps Xm and Xn have bounded densities fm and fn, then those
densities are related by fm�Ω fn.

Now we make a conceptual leap into the darkness, and claim that this
relation � should be sufficient evidence of isotropic diffusion through Ω.
Intuitively, if f and g are weight functions with f �Ω g, then there should
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be some sort of isotropic diffusion-like process Xt with X0 ∼ f and XT ∼ g.
This is the reason for the name.

1.3. Quadrature domains. Say that a function w is a weight function if
it is bounded, nonnegative, and measurable. A quadrature domain for a
weight function w is a bounded open set Ω so that we have w ≡ 0 outside
Ω, and ∫

hwdx≤
∫

Ω

hdx

for every integrable subharmonic function h on Ω.
That is, the measure 1Ω dλ is a diffusion of wdλ through Ω.

We can immediately observe that
∫

hwdx =
∫

Ω
hdx for any bounded har-

monic function h on Ω. So the quadrature domain has measure exactly∫
wdx,

λ (Ω) =
∫

Ω

1dλ =
∫

wdλ ,

and its centre of mass is the same too:
∫

Ω
xi dλ =

∫
xiwdλ .

The moment of inertia of Ω is at least as large as the moment of w:∫
x2wdλ ≤

∫
Ω

x2 dλ .

This agrees with the intuition that Ω is a more spread-out version of w.
Quadrature domains are not entirely unique. If Ω is a quadrature domain

for a weight w, and Ω′ ) Ω is a larger open set with λ (Ω′ \Ω) = 0, then
Ω′ is also a quadrature domain for w. But we will see they are essentially
unique.

2. UNIQUENESS OF QUADRATURE DOMAINS

We will prove in this section that if a weight function w has two quadra-
ture domains Ω and Ω′, then Ω is essentially equal to Ω′. First, we need a
large supply of subharmonic functions.

2.1. Green’s function.

2.1.1. Motivation: What is Green’s function? Loosely speaking, if we have
a differential operator A = ∑α aα∂ α , we say that a kernel function g(x,y) is
“Green’s function” if the kernel map

Kgh(x) =
∫

h(y)g(x,y)dy

is a right inverse for A. In other words, we have AKgh = h for any nice h.
The function spaces are left deliberately vague. This is not a precise

definition; it is a broad term for a class of similar objects.
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We find Green’s function for the operator −∇2, where

∇
2 = ∑

i
∂i∂i =

(
∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
d

)
.

We derive Green’s function from the properties of Brownian motion as on
page 80, section 3.3 of Mörters and Peres [4]. We will produce two flavours:
an “unrestricted Green’s function,” and a “restricted Green’s function” on
any bounded open set. Both will be subharmonic.

2.1.2. The unrestricted Green’s function for d ≥ 3. Let Bx(t) be Brownian
motion started at x ∈ Rd . It is a random continuous curve in Rd , and the
distribution of Bx(t) at a fixed time t is

P[Bx(t) ∈ A] =
∫

A
p(t;x,y)dy,

where p(t;x,y) := (2πt)−d/2 exp(−|x− y|2/2t) is the diffusion kernel.
This function p has two important properties. First, it is an approximation

to the identity as t→ 0, in the sense that if∫
Rd

p(t;x,y) f (y)dy→ f (x) as t→ 0.

Second, it solves the heat equation
∂p

∂ t
=

1
2

∇
2p.

Note the factor of 1/2, which we must carry into the formulas below.1

Let the unrestricted Green’s function for d ≥ 3 be half the integral of the
unrestricted kernel from t = 0 to t = ∞:

G(x,y) :=
1
2

∫
∞

0
p(t;x,y)dt =

1
(d−2)Cd

|x− y|2−d.

The interested reader is encouraged to do this integral and check that this is
true. Here Cd := 2πd/2/Γ(d/2), which is the area of the unit sphere in Rd .

Green’s function is the density of the expected time that the Brownian
motion Bx(t) spends in a set, because∫

A
G(d)(x,y)dy =

∫
A

∫
∞

0
p(t;x,y)dt dy =

∫
∞

0
P[Bx(t) ∈ A]dt.

and
∫

∞

0 P[Bx(t) ∈ A] =
∫

∞

0 E[1Bx(t)∈A] = E
[∫

∞

0 1Bx(t)∈A dt
]
.

It is clear from the explicit form above that G(x,y) is smooth on Rd ×
Rd \{x = y} and symmetric in its arguments, G(x,y) = G(y,x).

1It is arguable that − 1
2 ∇2 would be a more natural operator than ∇2, not just because it

appears in this equation but also because of its role as kinetic energy in quantum mechanics
with h̄ = 1. But everyone’s used to the Laplacian already.
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Let Gx(y) := G(x,y). One can check that Gx is locally integrable, har-
monic on the set Rd \{x}, and superharmonic everywhere.

This gives us a large selection of integrable subharmonic functions to use
in inequality (1). If x ∈Ω, then we can use −Gx. If x /∈Ω, then we can use
both Gx and −Gx. This turns out to be all we need, by Lemma 4.15.

2.1.3. The unrestricted Green’s function for d = 1,2. The integral above is
infinite for d = 2, essentially because Brownian motion is recurrent there.
We can still guess Green’s function for two dimensions with the follow-
ing informal argument. If −∇2 is the inverse of the kernel operator, then
−∇2 ∫ G(x,y)1Br(x) dy should be 1Br(x).

So we can make the following invalid computation:

1 =−∇
2
∫

G(x,y)1Br dy

?
=−

∫
∇

2G(x,y)1Br dy

?
=−

∫
|z|=r

n ·∇Gds,

where in the third line we use Stokes’s theorem (although it is invalid to
do that because ∇G is discontinuous at x). Here ds is (d− 1)-dimensional
surface area, and n is the outer normal.

The integral is over the sphere |z| = r, which has surface area Cdrd−1.
Brownian motion has radial symmetry, so we might as well assume that
Green’s function does, too. Then ∇G points radially, and its magnitude is
constant; therefore, 1 =−Cdrd−1n ·∇G.

This gives us a value for ∂G/∂ r =−1/Cdrd−1. Now, we assume that this
is true and integrate it to guess a formula for G. We get

G(x,y) :=− 1
π

log |x− y| in d = 2

G(x,y) :=−|x− y| in d = 1.

In both cases we have chosen constants to make the formulas nice.
These functions also have the properties that we listed above: they are

symmetric, smooth on Rd ×Rd \ {(x,x) : x ∈ Rd}, and Gx is locally inte-
grable, superharmonic everywhere, and harmonic on Rd \{x}.

Here is another way of reaching this which does not require us to be so
clever about integrals, called “differentiating on the parameter.” We pretend
that the dimension is real and write down the asymptotics of G as d→ 2.

G(x,y) =
1

(d−2)Cd
|x− y|2−d ≈ 1

(d−2)Cd
(1+(2−d) log |x− y|+ · · ·)
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The first term of this expansion becomes infinite as d → 2+, but it is a
constant. We subtract the constants out and define

G(x,y) :=− 1
π

log |x− y|.

The formula gives us the right answer for d = 1 as well, even though the
derivation makes no sense in that dimension. In any case, we have some sort
of formula, which will turn out to be Green’s function in two dimensions.

2.1.4. G is Green’s function for −∇2. Let Ω be an open subset of Rd . If
h : Ω→R is smooth and supported on a compact subset of Ω, we say it is a
test function.

Lemma 2.1. If h is a test function, then
∫

G(x,y)(−∇2h(y))dy = h(x).

Sketch of proof. Let Gx(y) := G(x,y). Let ε > 0. If y 6= x,

−Gx∇
2h =−∇ · (Gx∇h−h∇Gx),

because G is twice differentiable on that set and ∇2G = 0 there.
If we integrate on the whole space minus a small ball around x,

−
∫
Rd\Bε (x)

G(x,y)∇2h(y)dy =
∫
|y−x|=r

(
Gx

∂h
∂ r
−h

∂Gx

∂ r

)
ds.

There are no other boundary terms because h is compactly supported.
The surface area of the sphere |y− x| = ε is Cdεd−1. Green’s func-

tion is small compared to this, G(x,y) = o(1/|x− y|d−1), so the integral
of Gx∂h/∂ r is o(1). On the other hand, the integral of −h∂Gx/∂ r =
h(y)/Cdεd−1 will be the average of h on the small sphere. As ε → 0,

lim
ε→0

∫
Rd\Bε (x)

G(x,y)(−∇
2h(y))dy = h(x).

Green’s function is locally integrable and h is compactly supported, so
by dominated convergence, we get

∫
G(x,y)(−∇2h(y))dy = h(x), which

is what we were trying to prove. �

So for sufficiently smooth functions, convolution by Green’s function is
the inverse of −∇2.

2.1.5. Green’s function of a bounded open set. Let C be a bounded open
subset of Rd . Let Tx := min{t ≥ 0 : Bx(t) /∈C} be the first time that Bx(t)
leaves C.

We will say that the diffusion kernel restricted to C is the continuous
function pC : (0,∞)×C×C→ [0,∞) satisfying

P [By(t) ∈ A and t < Tx] =
∫

A
pC(t;x,y)dy.
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It is like the unrestricted diffusion kernel, except that the Brownian motion
is killed when it leaves C. The fact that there is such a function is proven in
the same section 3.3 of Mörters and Peres [4].

Set GC(x,y) =
∫

∞

0 pC(t;x,y)dt, so that we have∫
A

GC(x,y)dy =
∫

∞

0
P[By(t) ∈ A and t < Tx]dt.

This is our function, theGreen’s function of C.
From the properties of pC and Brownian motion, we know that GC is

nonnegative and symmetric. Here are some other well-known properties:
• y 7→ GC(x,y) is superharmonic on C and harmonic on C \{x}.
• GC(x,y)> 0 when x and y are in the same connected component of

C.
• The function y 7→ G(x,y)−GC(x,y) is harmonic on C.

If d ≥ 3, then we have pC ≤ p, so 0 ≤ GC(x,y) ≤ G(x,y). If d = 2, then
Mörters and Peres, Lemma 3.37, tells us that |G(x,y)−GC(x,y)| is bounded
by (1/π) logR/r, where r := d(x,Ωc) and R := inf{r : Br(x)⊇C}. In both
cases, the function y 7→GC(x,y) is bounded above by a function that’s inte-
grable on C, so it is also integrable on C.

2.2. The extended Green’s function. Writers who describe GD as “the
Green’s function” should be condemned to differentiate the Lebesgue’s mea-
sure using the Radon-Nikodym’s theorem.

— Joseph Doob

Even so, there is a subharmonic extension of Green’s function to Rd \{y},
which we refer to as the extended Green’s function.

Theorem 2.2. If C is a bounded open set with Green’s function GC, there is
a nonnegative extension Ge

C : C×Rd → [0,∞] so that:
• Ge

C(x,y) = GC(x,y) when y ∈C.
• Ge

C(x, ·) is subharmonic on Rd \{x} and superharmonic on C.
• Ge

C(x, ·) is zero at almost every point in Rd \C.
• Ge

C(x, ·) is integrable.

Reference. This is (c) of Doob’s Theorem 1.VII.4 [1]. Our set C is bounded
and d ≥ 2, so it is Greenian and the theorem applies.

Note that polar sets have Lebesgue measure zero, so Doob’s conclusion
that the function is zero at “quasi every finite point,” or in other words on
the complement of a polar set, implies that it holds on a set of full measure.

The extension is integrable because it’s equal to GC on C and zero almost
everywhere outside of it. �
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The above theorem is true for every bounded open set, even if it has sharp
cusps, an infinite number of small holes, or a boundary that has positive
Lebesgue measure. This generality is very important in our setting.

2.3. Monotonicity of quadrature domains. We can immediately conclude
that quadrature domains are essentially monotone.

Theorem 2.3. If w≤w′ are two nonnegative measurable functions and C,D
are quadrature domains for w and w′, then C is essentially contained in D.

Proof. Let E be a connected component of C. We will prove that E \D has
zero measure. If it’s empty, we are done. Otherwise, choose x ∈ E \D. By
the definition of a quadrature domain and the above properties of Ge

C, we
have∫

C
Ge

C(x,y)dx≤
∫

Ge
C(x,y)wdx≤

∫
Ge

C(x,y)w′ dx≤
∫

D
Ge

C(x,y)dx.

Therefore,
∫

C\D Ge
C(x,y)dx ≤

∫
D\C Ge

C(x,y)dx. But the second integral is
zero, because Ge

C(x, ·) is zero almost everywhere on Cc. Therefore,∫
C\D

Ge
C(x,y)dx = 0.

Green’s function is strictly positive on E, so E \D must have zero measure.
An open set in Euclidean space has only countably many components, so

C \D =
⋃

E component of C

E \D

also has zero measure, and C is essentially contained in D. �

Corollary 2.4. Quadrature domains are essentially unique.

Proof. By the lemma, two quadrature domains for the same weight are
essentially contained in each other, so their set difference has measure zero.

3. POSITIVITY OF THE LAPLACIAN

3.1. Positive distributions. Let Ω be an open subset of Rd , and recall that
a distribution on Ω is a continuous linear functional on the space of test
functions on Ω.

(We recall from distribution theory that a linear functional ψ on the space
of test functions is continuous if and only if, for every compact F ⊂Ω, the
restricted map ψ|C∞

c (F) : C∞
c (F)→ R is continuous in some ‖ ‖Cn(F) norm.

In particular, measures and locally integrable functions are distributions,
and the space is closed under differentiation.)

Let D′(Ω) be the vector space of distributions. Let ψ ∈D′(Ω). Then ∂iψ

is the distribution h 7→ −ψ[∂ih], and ∇2ψ is the distribution h 7→ ψ[∇2h].
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If µ is a locally finite measure or a signed measure2 we write the corre-
sponding distribution h 7→

∫
hdµ as dµ . In the same way, if f is locally

integrable, we write the distribution h 7→
∫

h f dλ as f dλ .
(This is a little different from the usual notation, where distributions from

measures are written as µ and distributions from functions are written as f .)
A distribution ψ is positive if ψ[h]≥ 0 whenever h≥ 0, and it is negative

if ψ[h]≤ 0 whenever h≥ 0. We write ψ ≤ ψ ′ if ψ ′−ψ is positive.

3.1.1. The Laplacian of a subharmonic function. We will now prove that
the distributional Laplacian of a subharmonic function on Ω is a locally
finite measure.

Theorem 3.1. If f is subharmonic on Ω, then ∇2( f dλ ) is positive on Ω.

Proof. Fix h ∈C∞
c (Ω) with h ≥ 0. Let h be supported on compact K ⊂ Ω.

Let ϕ be a positive mollifier, that is, an infinitely differentiable nonnegative
function on Rd with ϕ(x)≡ 0 for |x| ≥ 1 and

∫
ϕ dx = 1.

Let ϕn(x) := ndϕ(nx). Let n > d(F,Ωc). Then fn := f ∗ϕn is defined and
infinitely differentiable on a neighbourhood of K. It is also subharmonic:

f ∗ϕn(x) =
∫

B1/n

f (x− y)ϕn(y)dy

≤ 1
λ (Br)

∫
B1/n

∫
Br

f (x− y+ z)ϕn(y)dzdy

=
1

λ (Br)

∫
Br

f ∗ϕn(x+ z)dz.

Therefore, ∇2( f ∗ϕn) exists and is nonnegative.
It is well-known that f ∗ϕn→ f in L1(F). So,

∇
2( f dλ )(h) =

∫
f ∇

2hdx = lim
n→∞

∫
( f ∗ϕn)∇

2hdx

= lim
n→∞

∫
∇

2( f ∗ϕn)hdx

≥ 0.

That is true for every nonnegative h ∈C∞
c (Ω), so ∇2 f is positive on Ω. �

Lemma 3.2. If ψ is a positive distribution on Ω, then there is a locally finite
measure µ on Ω with ψ(h) =

∫
hdµ for every test function h ∈C∞

c (Ω).

Proof. See Rudin [5], chapter 6 exercise 4. We sketch the proof.
Let ψ be a positive distribution. If K ⊂⊂ Ω is a compact subset, then

there is a nonnegative h1 ∈C∞
c (Ω) that is identically 1 on K. Positivity says

2Our signed measures are always bounded, |ν |(Ω)< ∞.
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0 ≤ ψ(h) ≤ ψ(h1) if h ∈ C∞
c (K) and 0 ≤ h ≤ 1. Therefore, the restricted

distribution ψ|K : C∞
c (K)→ R is continuous with respect to ‖h‖∞.

By the Riesz representation theorem and the positivity, there is a finite
measure µK with ψ(h) =

∫
hdµK for every test function h supported on

the compact set. These restricted measures are compatible, and we can
combine them to get a locally finite measure µ on Ω with ψ(h) =

∫
hdµ

for h ∈C∞
c (Ω).

Corollary 3.3. If f is subharmonic on Ω, then there exists a locally finite
measure µ on Ω with ∇2( f dλ ) = dµ .

Proof. The distributional Laplacian ∇2( f dλ ) is positive by Theorem 3.1,
so there is a locally finite measure µ with ∇2( f dλ ) = dµ by Lemma 3.2.

�

3.1.2. What is coming next. Corollary 3.3 tells us a lot about functions
which are subharmonic on open sets. What if a function f is subharmonic
on a general measurable set?

It turns out that if we already know that the distributional Laplacian
∇2( f dλ ) is a signed measure dν , then we can get very precise informa-
tion: if f is subharmonic on a measurable set E, then ν is positive on E.

That is a special case of Theorem 3.13. In the next few sections we
will study the relationship between the spherical average function and the
distributional Laplacian, and then finally prove that theorem.

3.2. The existence of the spherical average function. Suppose f is lo-
cally integrable, x is a point in Ω, and 0 < r < d(x,Ωc). Let the average on
the sphere of radius r around x be

L f (x;r) :=
1

Cd

∫
|z|=1

f (x+ rz)dz.

Again, Cd is the total surface area of the unit sphere.
If the reader is doubtful about the notation

∫
|z|=1 dz, we offer a very con-

crete interpretation in the next section, Section 3.3.

Lemma 3.4. Let Ω be an open set, and fix a point x ∈Ω.
If f is locally integrable on Ω, then L f (x;r) is defined for almost every

r < d(x,Ωc), and
∫ s

0 rd−1|L f (x;r)|dr < ∞ for s < d(x,Ωc).

Proof. Let 0 < s < R. Bs(x) is compact, so
∫

Bs(x) | f |dx < ∞.
Write this as a double integral in polar coordinates y= x+rz, where r > 0

and z is a point on the unit sphere:∫
Bs(x)

∣∣ f (y)∣∣dy =
∫ s

0

[∫
|z|=1

∣∣ f (x+ rz)
∣∣rd−1 dz

]
dr.
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The left-hand integral is finite, so Tonelli’s theorem tells us that the inte-
gral in brackets is finite for a.e. r ∈ (0,s), and therefore a.e. r ∈ (0,R).

Therefore, L f (x;r) := 1
Cd

∫
|z|=1 f (x+ rz)dz is well-defined a.e., and∫ s

0
|L f (x;r)|rd−1 dr =

1
Cd

∫ s

0

∣∣∣∣∫|z|=1
f (x+ rz)

∣∣∣∣ rd−1 dzdr

≤ 1
Cd

∫ s

0

∫
|z|=1
| f (x+ rz)|rd−1 dzdr

< ∞.

Corollary 3.5. The function r 7→L f (x;r) is locally integrable on (0,d(x,Ωc)).

Proof. If 0 < t < s < d(x,Ωc), then (r/t)d−1 ≥ 1 when r ∈ [t,s], so∫ s

t
|L f (x;r)|dr ≤ 1

td−1

∫ s

t
|L f (x;r)|rd−1 dr < ∞.

Therefore, r 7→ L f (x;r) is integrable on compact subsets of (0,d(x,Ωc)).
�

Corollary 3.6. The average of a locally integrable function f on Bs(x) is

A f (x;s) =
∫ s

0

drd−1

sd L f (x;r)dr.

Proof. We use the change of variables y = x+ rz again to write∫
Bs(x)

f (y)dy =
∫ s

0

∫
|z|=1

f (x+ rz)rd−1 dr dz

=
∫ s

0
CdL f (x;r)rd−1 dr.

Dividing this by the integral
∫

Bs(x) 1dy =Cdsd/d gives the result. �

At this point we know that L f (x;r) makes sense and is integrable. The
next step is to show that spherical averages are related to the distributional
Laplacian by an integral equality. We do that in the next section.

3.3. A digression: multidimensional polar coordinates. In case one finds
the “polar coordinates” y = x+ rz above to be a little suspicious, we will
provide a concrete interpretation.
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We define multidimensional polar coordinates r,ϕ1, . . . ,ϕd−2,θ , where

y1 = x1 + r sinϕ1,

y2 = x2 + r cosϕ1 sinϕ2,

y3 = x3 + r cosϕ1 cosϕ2 sinϕ3,

...
yd−2 = xd−2 + r cosϕ1 · · ·cosϕd−3 sinϕd−2,

yd−1 = xd−1 + r cosϕ1 · · ·cosϕd−3 cosϕd−2 sinθ ,

yd = xd + r cosϕ1 · · ·cosϕd−3 cosϕd−2 cosθ

The bounds are r > 0,−π

2 ≤ ϕ1, . . . ,ϕd−2 ≤ π

2 , 0≤ θ < 2π . They are the
usual polar coordinates when d = 2,3. For example, in d = 3,

y1 = x1 + r cosϕ1 cosθ ,

y2 = x2 + r cosϕ1 sinθ ,

y3 = x3 + r sinϕ1.

We want to find the determinant of the Jacobian matrix J. One way to
do this is to calculate the metric g = JJT , which is diagonal with grr =
∂y
∂ r ·

∂y
∂ r = 1, gϕ jϕ j =

∂y
∂ϕ j
· ∂y

∂ϕ j
= r2 cos2 ϕ1 · · ·cos2 ϕ j−1, and gθθ = ∂y

∂θ
· ∂y

∂θ
=

r2 cos2 ϕ · · ·cos2 ϕd−2. We have detg = (detJ)2, so we take the square root:

|detJ|=
√

detg =
√

∏gii = r× (r cosϕ1)×·· ·× (r cosϕ1 · · ·cosϕd−2),

or |detJ|= rd−1 cosd−2 ϕ1 · · ·cosϕd−2.
We don’t need to know the sign, but if we want it, we can get it by looking

at the point ϕ1 = · · ·=ϕd−2 = 0, θ = 0, r = 1, where J is the identity matrix.
The sign of the determinant is positive there, and {detJ 6= 0} is connected
and dense, so the sign is nonnegative everywhere.

The change-of-variables formula tells us that∫
Rd

f (y)dy =
∫

∞

0

∫
π/2

−π/2
· · ·
∫

π/2

−π/2

∫ 2π

0
f (x+ rz)rd−1

cosd−2
ϕ1 · · ·cosϕd−2 dϕ1 · · · dϕd−2 dθ dr.

Now we ask the reader to interpret
∫
|z|=1 as shorthand for integration over

all the coordinates except r, and dz as an abbreviation for the expression
cosd−2 ϕ1 · · ·cosϕd−2 dϕ1 · · · dϕd−2 dθ .

Then we do have the identity
∫

f (y)dy =
∫

∞

0
∫
|z|=1 f (x+ rz)rd−1 dzdr,

and the derivation in the last section makes sense.
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3.3.1. Exercise: the value of Cd . This gives us another expression for Cd:

Cd =
∫
|z|=1

dz =
∫

π/2

−π/2
· · ·
∫

π/2

−π/2

∫ 2π

0
cosd−2

ϕ1 · · ·cosϕd−2 dϕ1 · · ·dϕd−2 dθ

= 2π

d−2

∏
j=1

∫
π/2

−π/2
cos j

ϕ dϕ.

It is fun to use the beta integral
∫ 1

0 xα−1(1− x)β−1 dx = Γ(α)Γ(β )/Γ(α +

β ) and the special value Γ(1/2)=
√

π to show that this is equal to 2πd/2/Γ(d/2).
Hint: evaluate

∫ π/2
−π/2 cos j ϕ dϕ = Γ(1

2)Γ( j/2+ 1
2)/Γ( j/2+1).

3.4. Spherical averages and the distributional Laplacian. We can get
many weighted integrals of the spherical averages L f (x;r) by evaluating
the Laplacian ∇2( f dλ ) on certain nonnegative functions.

Lemma 3.7. Let x ∈ Ω. Let R := d(x,Ωc). Let η ∈ C∞
c (0,R) with η ≥ 0.

Then there is a nonnegative function h ∈C∞
c (Ω) with

∇
2( f dλ )(h) =−

∫ R

0
η
′(r)L f (x;r)dr

for every locally integrable function f on Ω.

Proof. Let h(y) := H(|y− x|) for y ∈ BR(x), where

H(r) :=
∫ R

r

η(ρ)

Cdρd−1 dρ.

The compactly supported function η is zero on a neighbourhood of 0 and
R, so H(r) is smooth, constant near 0, and zero on a neighbourhood of R.
Therefore, h is smooth even at x, and compactly supported in BR(x).

If a smooth function h is radially symmetric around a point x, then there
is a formula for its Laplacian which holds in any Rd:

∇
2h =

1
rd−1

∂

∂ r

[
rd−1 ∂

∂ r
h
]

where we are using the polar coordinates y = x+ rz.3

3We can get this from the Voss-Weyl formula ∇2h= 1√
detg ∑i j

∂

∂ξi
(
√

detggi j ∂

∂ξ j
h). Here

gi j = (g−1)i j. Using the coordinates from Section 3.3, we get the result.
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The radial derivative of h is of course ∂h
∂ r = H ′(r) = −η(r)/Cdrd−1,

which means the Laplacian is ∇2h =−η ′(r)/Cdrd−1. Then

∇
2( f dλ )(h) =

∫
BR(x)

f ∇
2hdy

=−
∫

BR(x)
f (y)

η ′(r)
Cdrd−1 dy

=−
∫ R

0

∫
|z|=1

f (x+ rz)
η ′(r)

Cdrd−1 rd−1 dzdr

=−
∫ R

0

η ′(r)
Cd

∫
|z|=1

f (x+ rz)dzdr

=−
∫ R

0
η
′(r)L f (x;r)dr.

This is the result. �

We will use this basic result to evaluate the differences A f (x;s)−A f (x; t)
in terms of the distributional Laplacian. We will get an especially precise
result when ∇2( f dλ ) = dν for some signed measure ν .

3.5. The difference of averages on two concentric balls: choosing func-
tions for approximation. Recall that A f (x;r) is the average of f on the
ball Bx(r).

Let x ∈ Ω, 0 < r < s < d(x,Ωc). We construct some nonnegative func-
tions ηm that are suitable for Lemma 3.7, and then use it to prove that

(2) A f (x;s)−A f (x; t) = lim
m→∞

∇
2( f dλ )(hm)

where hm(y) :=
∫

∞

|y−x|ηm(r)/Cdrd−1 dr as in the lemma.

Write the formula in Corollary 3.6 as A f (x;s) =
∫

∞

0 1r<s
drd−1

sd L f (x;r)dr.
Then we can write the difference A f (x; t)−A f (x;s) as

A f (x; t)−A f (x;s) =
∫

∞

0

[
1r<t

drd−1

td −1r<s
drd−1

sd

]
L f (x;r)dr.

We want to connect this to Lemma 3.7. Let w be the function

(3) w(r) :=

{
drd−1 if r < 1, and
0 if r ≥ 1.

Let W (r) :=min{1,rd} be the integral of w from 0 to r. Then the expression
in brackets is the derivative of W (r/t)−W (r/s), where it is differentiable.
Unfortunately, W isn’t smooth, so we can’t plug it into Lemma 3.7 directly
and we have to approximate.
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Let wm be a sequence of compactly supported, nonnegative smooth func-
tions wm ∈C∞

c (0,∞) which increase to w. Let Wm(r) :=
∫ r

0 wm(ρ)dρ .

Lemma 3.8. Given 0 < t < s, the sequence of functions

ηm,s,t(r) :=Wm(r/t)−Wm(r/s)

converges uniformly to W (r/t)−W (r/s), and each function satisfies

0≤ ηm,s,t(r)≤

{
min{1,rd/td} if r < s
0 otherwise

and

|η ′m,s,t(r)| ≤

{
drd−1/td if r < s
0 otherwise.

Proof. Here ηm,s,t(r) ≥ 0 because Wm is increasing and r/t > r/s, and
ηm,s,t(r)≤Wm(r/t)≤W (r/t) = min{1,(r/t)d}. The rest is easy. �

Lemma 3.9. Suppose x ∈ Ω and 0 < t < s with Bs(x) ⊆ Ω. If we choose
functions ηm,s,t as above, then we will have

(2) A f (x;s)−A f (x; t) = lim
m→∞

∇
2( f dλ )(hm,s,t,x)

for hm,s,t,x(y) :=
∫

∞

|y−x|ηm,s,t(r)/Cdrd−1 dr as in Lemma 3.7.

Proof. We start from Corollary 3.6, and remember that the functions wm(r)
are functions that increase to drd−1 for r < 1.

A f (x;s) =
∫ s

0

drd−1

sd L f (x;r)dr

=
∫

∞

0
lim

m→∞

wm(r/s)
s

L f (x;r)dr.

That is bounded by 1r<s(d/s)|L f (x;r)|, which is integrable by Lemma 3.4.
So we can use dominated convergence to get:

A f (x;s) = lim
m→∞

∫
∞

0

wm(r/s)
s

L f (x;r)dr.

Replace s by t and subtract:

A f (x;s)−A f (x; t) = lim
m→∞

∫
∞

0

[
wm(r/s)

s
− wm(r/t)

t

]
L f (x;r)dr

= lim
m→∞

∫
∞

0
(−η

′
m,s,t(r))L f (x;r)dr

= lim
m→∞

∇
2( f dλ )(hm,s,t).

The last equality comes from Lemma 3.7. This is the desired identity. �
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If ∇2( f dλ ) is a signed measure dν , we can use this lemma to write
the difference A f (x; t)−A f (x;s) as an integral with respect to the signed
measure.

3.6. The difference of averages on two concentric balls: a formula for
signed measures.

Theorem 3.10. Suppose f is locally integrable on Ω and ∇2( f dλ ) = dν

where ν is a signed measure. Let x ∈Ω and 0 < t < s < R = d(x,Ωc).
Let

hs,t,x(y) :=
∫

∞

|y−x|

W (r/t)−W (r/s)
Cdrd−1 dr.

Then
∫

hs,t,x dν = A f (x;s)−A f (x; t).

Proof. Let hm,s,t,x be the functions provided by Lemma 3.9 with

A f (x;s)−A f (x; t) = lim
m→∞

∇
2( f dλ )(hm,s,t,x).

If we can prove that limm
∫

hm,s,t,x dν =
∫

hs,t,x dν , we will be done. We
can write the difference as

hs,t,x(y)−hm,s,t,x(y) =
∫

∞

|y−x|

W (r/t)−W (r/s)−ηm,s,t(r)
Cdrd−1 dr.

This difference is uniformly bounded in absolute value by∫
∞

0

|W (r/t)−W (r/s)−ηm,s,t(r)|
Cdrd−1 dr.

Lemma 3.8 says that the integrand is uniformly bounded by 1r<srCd/td ,
and that it goes to zero pointwise. By the dominated convergence theorem,
max |hs,t,x−hm,s,t,x| → 0, so we do have limm

∫
hm,s,t,x dν =

∫
hs,t,x dν . �

This lemma will allow us to get an estimate on the difference of averages
from weak estimates on the Laplacian. To get it, we need to know

∫
hdx.

Lemma 3.11. Let x ∈ Ω and 0 < t < s. With hs,t,x defined as in Theo-
rem 3.10, ∫

hs,t,x(y)dy =
1

2(d +2)
(s2− t2).
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Proof. We know what the function is, so the proof is a calculation. First,∫
Rd

hs,t,x(y)dy =
∫
Rd

[∫ s

|x−y|

W (ρ/t)−W (ρ/s)
Cdρd−1 dρ

]
dy

=
∫

∞

0

[∫ s

r

W (ρ/t)−W (ρ/s)
Cdρd−1 dρ

]
Cdrd−1 dr

=
∫ s

0

W (ρ/t)−W (ρ/s)
ρd−1

[∫
ρ

0
rd−1 dr

]
dρ

=
∫ s

0
(W (ρ/t)−W (ρ/s))

ρ

d
dρ.

We have W (r) = min{1,rd}, so∫ s

0
(W (ρ/t)−W (ρ/s))

ρ

d
dρ =

[∫ t

0

ρd+1

dtd dρ +
∫ s

t

ρ

d
dρ

]
−
∫ s

0

ρd+1

dsd dρ

=
t2

d(d +2)
+

s2− t2

2d
− s2

d(d +2)

=
1

2(d +2)
(s2− t2).

�

We will use this in Lemma 3.15 and Theorem 3.16 to get quadratic
bounds on A f (x;s)−A f (x; t) in the case where ∇2( f dλ ) = ρ dλ with 0 ≤
ρ ≤ 1.

3.7. Limits of radial averages. A function is a limit of radial averages at
x if it is integrable in a neighbourhood of x and the limit limr→0 A f (x;r)
exists and is equal to f (x). This is strictly weaker than continuity at a point.

A subharmonic function is always a limit of radial averages, because

h(x)≤ inf
0<r<s

Ah(x;r)≤ limsup
y→x

h(y)≤ h(x).

3.7.1. Subharmonicity on average. We say that a function f is subhar-
monic on average at x if it is a limit of radial averages at x and satisfies
condition (b) in the definition of subharmonicity. That is, there exists some
small ε > 0 so that

lim
r→0

A f (x;r) = f (x) = inf
0<r<ε

A f (x;r).

This is strictly weaker than subharmonicity. For example, the sign func-
tion is subharmonic on average everywhere, but its average on the interval
B2(1) = (−1,3) is A f (1;2) = 1

2 , which is strictly less than sign1 = 1.
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From our point of view, the problem is that the distributional Laplacian
of the sign function is too irregular: it is not a signed measure.4

3.7.2. ...implies positivity of the Laplacian. We will show that, if the Lapla-
cian is a signed measure dν , then ν is positive on any measurable set where
f is subharmonic on average.

We need a consequence of the Lebesgue-Besicovitch theorem.

Lemma 3.12. If E ⊆Ω is measurable and ν is a signed measure with ν(E)<
0, then there is a point x ∈ E with

limsup
t→0

ν(Bt(x))
λ (Bt(x))

< 0.

Proof. Let µ = |ν |+λ , and f = dν/dµ . Then
∫

f dµ = ν(E) < 0, so the
set of points where f is negative must have positive measure.

By the Lebesgue-Besicovitch differentiation theorem,

lim
t→0

ν(Bt(x))
µ(Bt(x))

= f (x)

except on a set N with µ(N) = 0. The set of points with f (x) < 0 has
positive measure, so there must be some point x with f (x)< 0 and x /∈ N.

By definition of the limit, ν(Bt(x)) is negative for small t, and 0≤ λ ≤ µ ,
so 1/λ (Bt(x))≥ 1/µ(Bt(x)) and ν(Bt(x))/λ (Bt(x))≤ ν(Bt(x))/µ(Bt(x)).

We therefore have the strict inequality

limsup
t→0

ν(Bt(x))
λ (Bt(x))

≤ limsup
t→0

ν(Bt(x))
µ(Bt(x))

= f (x)< 0.

That proves the result. �

Theorem 3.13. Suppose f is locally integrable on Ω, and ∇2( f dλ ) = dν

where ν is a signed measure.
If f is subharmonic on average on a measurable set E, then E is a posi-

tive set for ν , i.e. ν(E ′)≥ 0 for E ′ ⊆ E.

Proof. Suppose E is not positive. Let E ′ be a measurable subset of E with
negative ν-measure. By Lemma 3.12, ∃x ∈ E ′ with

limsup
t→0

ν(Bt(x))
λ (Bt(x))

=−c < 0.

Let s > 0 be small enough that ν(Bt(x))/λ (Bt(x))<−c/2 for t < s and
the subharmonic inequality holds for Bs(x).

4If h is a test function, then ∇2(sign)(h) =
∫

∞

−∞
signxh′′ dx =−2h′(0). Suppose there

were a signed measure ν with
∫

hdν = −2h′(0). Then there would be a constant C =
|ν |(Ω)/2 with |h′(0)| ≤C max |h| for every test function h, but this is absurd.
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Theorem 3.10 and Corollary 3.11 tell us that, for each x∈Ω and 0< t < s,
there is a nonnegative radially symmetric continuous function hs,t,x with∫

hs,t,x(y)dν(y) = A f (x;s)−A f (x; t).

The reader can check from the definition that hs,t,x(y) is supported on Bs,
radially symmetric, and decreases as y gets farther from x. So if α > 0, then
{hs,t,x > α} is a ball around x of radius less than s, and∫

hs,t,x dν =
∫

∞

0
ν({hs,t,x > α})dα

≤−c
2

∫
∞

0
λ ({hs,t,x > α})dα

=−c
2

∫
hs,t,x dλ =− c

4(d +2)
(s2− t2).

The last step is Lemma 3.11.
Fix s, take t→ 0, and use the fact that A f (x; t)→ f (x) as t→ 0, because f

is a limit of radial averages at x. We get the impossible inequality:

0≤ A f (x;s)− f (x) = limsup
t→0

∫
hs,t,x dν ≤− c

4(d +2)
s2 < 0.

So, there is no measurable subset E ′ with ν(E ′)< 0. �

3.8. On an open set, positivity implies subharmonicity. Now we will go
from the Laplacian to full subharmonicity.

Lemma 3.14. Let f be locally integrable on an open set Ω. Suppose
∇2( f dλ ) is positive on Ω. Then there is a subharmonic f̄ on Ω with f̄ = f
a.e.on Ω.

Proof. Let x ∈Ω and t < s < d(x,Ωc).
Theorem 3.10 tells us that A f (x;s)−A f (x; t) = ∇2( f dx)(hs,t) ≥ 0 for a

certain function hs,t , so A f (x; t) decreases to a limit (possibly−∞) as t→ 0.
Let f̄ (x) be that limit:

f̄ (x) := lim
t→0

A f (x; t) = inf
t>0

A f (x; t).

The Lebesgue differentiation theorem tells us that A f (x; t)→ f (x) for al-
most every x, so f = f̄ for almost every x ∈Ω.

We claim f̄ is subharmonic on Ω. It is less than or equal to its aver-
ages on balls because f̄ (x) ≤ A f (x; t) = A f̄ (x; t), so (b) in the definition of
subharmonicity is satisfied. We must prove that f̄ is upper semicontinuous.
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Let xn be a sequence of points in Ω that converge to x. Let 0 < r <
d(x,Ωc). We can break down f̄ (xn) in the following way:

f̄ (xn) =
[

f̄ (xn)−A f (xn;r)
]
+
[
A f (xn;r)−A f (x;r)

]
+A f (x;r).

The first summand is nonpositive by definition. The second one converges
to 0 as n→∞, because A f (x;r) is continuous in x. This is a general property
of convolutions, but it can be proven directly in this case by writing

A f (r;xn)−A f (r;x) =
1

λ (Br)

∫
(1Br(xn)−1Br(x)) f (y)dy.

The integrand is dominated by | f | and converges pointwise to zero. Take
the lim sup of both sides of the equality as n→ ∞:

limsup f̄ (xn) = (nonpositive)+A f (x;r)

and then take r→ 0 to get limsup f̄ (xn)≤ f̄ (x). So f̄ is upper semicontin-
uous, and therefore subharmonic. �

Note. Theorems 3.13 and 3.14 together tell us that if f is subharmonic on
average, and its Laplacian is a signed measure, then it is subharmonic.

3.9. The measure of the Laplacian on the zero set. In what follows, we
suppose f is a limit of radial averages, f ≥ 0, and the distributional Lapla-
cian ∇2( f dλ ) is ρ dλ with |ρ| ≤C.

We will show that ρ = 0 a.e. on the zero set {x : f (x) = 0}. First, we
show that f (y) converges uniformly to zero as y approaches the zero set.

Lemma 3.15. Suppose f ≥ 0 is a limit of radial averages and ∇2( f dλ ) =
ρ dλ with |ρ| ≤C. If f (x)= 0, then f (y)≤ 2dC|y−x|2 if |y−x|< 1

2d(x,Ωc).

By Theorem 3.10, if x is a point in Ω and 0 < t < s < d(x,Ωc), then

A f (x;s)−A f (x; t) =
∫

hs,t,x ρ dλ

where h≥ 0 and
∫

hdλ = (s2− t2)/2(d +2). Therefore,

|A f (x;s)− f (x)|= lim
t→0
|A f (x;s)−A f (x; t)| ≤ Cs2

2(d +2)
.

Fix x,y ∈Ω with |y− x|< 1
2d(x,Ωc). Suppose f (x) = 0. Write

f (y) = f (y)− f (x)

= [ f (y)−A f (y;s)]+ [A f (y;s)−2dA f (x;2s)]+2d[A f (x;2s)− f (x)].
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The first summand is bounded in absolute value by Cs2/2(d+2), the second
one is nonpositive because Bs(y) ⊆ B2s(y) and λ (B2s) = 2dλ (Bs), and the
third one is bounded by 2d+2Cs2/2(d +2). So,

f (y)≤Cs2 1+2d+2

2(d +2)
≤ 2dCs2.

This is the result. �

Theorem 3.16. Suppose f ≥ 0 is a limit of radial averages and ∇2( f dλ ) =
ρ dλ with |ρ| ≤C. Then ρ = 0 a.e. on the zero set {x ∈Ω : f (x) = 0}.

Proof. Let Z := {x ∈ Ω : f (x) = 0}. By the Lebesgue density theorem,
there is a set of zero λ -measure N so that for every point x ∈ Z \N, both of
the following equalities hold:

lim
r→0

λ (Br(x)∩Zc)

λ (Br)
= 0 and(4)

lim
r→0

1
λ (Br)

∫
Br(x)

ρ dλ = ρ(x).(5)

By the last theorem, f (y)≤ 2dC|y− x|2 for y sufficiently close to x, so

A f (x;s)≤ λ (Bs(x)∩Zc)

λ (Bs(x))
×O(s2) = o(s2).

This estimate holds for every x ∈ Z \N.

For every x ∈ Z and s < d(x,Ωc), we have the inequality f (x) = 0 ≤
A f (x;s), so f is subharmonic on average on Z. The Laplacian is the signed
measure ρ dλ , and by Theorem 3.13, that signed measure must be positive
on Z, which means that we must have ρ ≥ 0 almost everywhere on Z.

So it is enough to prove ρ ≤ 0 a.e. on the zero set. Suppose not. Then
there must be at least one point x ∈ Z \N with ρ(x)> 0. The point is not in
N, so the limit in equation 5 exists. For s > 0 sufficiently small, we have

inf
t∈(0,s)

1
λ (Bt)

∫
Bt(x)

ρ dλ >
ρ(x)

2
for t ∈ (0,s).

Construct hs,t,x as in Theorem 3.10, and repeat the reasoning in the proof of
Lemma 3.13 to get the inequality∫

hs,t,x ρ dλ ≥ ρ(x)
2

∫
hs,t,x dλ .

Then by Theorem 3.10 and the Lemma 3.11,

A f (x;s)−A f (x; t) =
∫

hs,t ρ dλ ≥ ρ(x)
2

∫
hs,t dλ =

ρ(x)
4(d +2)

(s2− t2).
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Take the limit of both sides as t→ 0 and use the fact that limt→0 A f (x; t) =
f (x) = 0 to get the inequality

A f (x;s)≥ ρ(x)
4(d +2)

s2.

This contradicts the estimate A f (x;s) = o(s2) for x ∈ Z.
Therefore, ρ = 0 a.e. on the zero set Z. �

4. THE EXISTENCE OF QUADRATURE DOMAINS

We say that a weight function is properly supported if it is greater than or
equal to 1 on some bounded open set, and 0 outside that open set. For exam-
ple, any finite sum of indicator functions of bounded open sets is properly
supported, but the function 1

21B1 is not properly supported.
From now on, suppose w is a properly supported weight function. We

will prove the existence of a quadrature domain for w. We start by posing
a minimization problem, then extract a set from the solution, and finally
prove that the set is a quadrature domain in Theorem 4.16.

Definition. If ψ and ψ ′ are distributions, then we say that ψ ≤ψ ′ if ψ ′−ψ

is a positive distribution.

Let RA(Rd) be the set of functions f : Rd→R which are a limit of radial
averages at every point in Rd . This is a weak continuity condition.

The minimization problem is:

Minimization problem.
Find the smallest nonnegative f ∈ RA(Rd) with ∇2( f dλ )≤ (1−w)dλ .

It will turn out that there is a function that is pointwise less than or equal
to any other function, and that will be the “smallest” one.

Some sort of weak continuity condition is necessary in this problem. If
we allow the whole class of nonnegative locally integrable functions, no
function can be minimal except for 0, which is typically not a solution.

4.1. Newtonian potentials. If w is a bounded, compactly supported weight
function, let the Newtonian potential of w be the convolution of w with the
unrestricted Green’s function:

Nw(x) :=
∫
Rn

G(x,y)w(y)dy.

Recall that G(x,y) is a function of x−y only, so this is really a convolution.
The convolution of a bounded, compactly supported function with a lo-

cally integrable function is continuous. Green’s function is locally inte-
grable, like we said earlier, and the first derivatives ∂G/∂xi = −xi/Cd|x−
y|d are also locally integrable.
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Therefore, Nw is continuous on all of Rd . We claim that it has continuous
first derivatives which are

∫
Rn(−xi/Cd|x−y|d)w(x)dx. This is easy to check

by integrating the functions using Fubini’s theorem and checking that the
result is Nw plus a function independent of xi.

Green’s function is symmetric in its variables, so if h ∈ C∞
c (Rd) is a

test function, then−∇2(Nwdλ )[h] = (Nwdλ )[−∇2h] = (wdλ )[−N∇2h] =
wdλ (h) by Lemma 2.1. Therefore, −∇2(Nwdλ ) = wdλ as distributions.

If w is bounded and constant outside a compact set, let c be the constant,
and define Nw := N(w− c)+ c

2d |x|
2. Again −∇2(Nwdλ ) = w.

4.2. Minimization over superharmonic functions. We use Newtonian
potentials to transfer the minimization problem to the theory of superhar-
monic functions.

Definitions. If f is a function, it’s superharmonic if − f is subharmonic. If
ψ is a distribution on E, then it is negative if ψ[h]≤ 0 for h∈C∞

c (E), h≥ 0.

The theorems about subharmonic functions carry over to superharmonic
functions with a minus sign. In particular, we have these three statements:

Theorem 4.1. If f is a superharmonic function on an open set Ω, then
∇2( f dλ ) is a negative distribution.

Theorem 4.2. If ∇2( f dλ ) = dν , and f is superharmonic on average on a
measurable set E, then E is a negative set for ν .

Lemma 4.3. If the Laplacian of f is a negative distribution on an open set,
then f is equal almost everywhere to a superharmonic function.

This is enough to turn the minimization problem into a question about
superharmonic functions.

Theorem 4.4. The minimization problem is equivalent to:

Find the smallest nonnegative function f on Rd with the property that
the sum f +N(1−w) is superharmonic everywhere in Rd .

Proof. We will show that the two classes of functions are the same: f is
a limit of radial averages with ∇2( f dλ ) ≤ (1−w)dλ if and only if f +
N(1−w) is superharmonic.

Suppose f is a limit of radial averages and ∇2( f dλ )≤ (1−w)dλ . Then

∇
2[( f +N(1−w))dλ ] = ∇

2( f dλ )− (1+w)dλ ≤ 0.

By Lemma −3.14, f +N(1−w) = f̄ a.e. for some superharmonic f̄ .
The function N(1−w) is continuous and averaging is linear, so f +N(1−

w) is a limit of radial averages, and so is the superharmonic function f̄ .
Therefore, they are equal, and f +N(1−w) = f̄ is superharmonic.
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Suppose f +N(1−w) is superharmonic. By Theorem −3.1,

∇
2[( f +N(1−w))dλ

]
≤ 0,

so ∇2( f dλ )≤ (1−w)dλ .
Every superharmonic function is a limit of radial averages, and N(1−w)

is continuous, so by linearity f is a limit of radial averages.

The two conditions are therefore equivalent. �

We can now use the fundamental convergence theorem for superhar-
monic functions to find a minimum.

Theorem 4.5 (Fundamental convergence theorem).
Let Γ be a family of superharmonic functions defined on an open subset of

Rd and locally uniformly bounded below. Let u(x) be the pointwise infimum
of all the functions in Γ. Let u+(x) = min{u(x), liminfy→x u(y)}.

Then u+ = u almost everywhere, and u+ is superharmonic.

Proof. See for example Section 1.III.3 of Doob [1].

Corollary 4.6. Let π be a measurable, bounded function on Rd that is con-
stant outside a compact set. Then there is a smallest f ≥ 0 with the property
that f +Nπ is superharmonic.

Proof. Let Γ = {u : u is superharmonic, γ ≥ Nπ}. The functions in this
class are uniformly bounded below on any compact set K by minK Nπ .

Apply the fundamental convergence theorem to Γ to get a superharmonic
function u+ less than or equal to every function in Γ. Then u+ ∈ Γ:

u+(x) = min{u(x), liminf
y→x

u(y)}

≥min{Nπ(x), liminf
y→x

Nπ(y)}

≥ Nπ(x)

by continuity of Nπ(x), so it obeys the inequality, and it’s superharmonic.
Set f := u+−Nπ . Then f ≥ 0 and f +Nπ is superharmonic, and if that

is true for g, then g+Nπ ∈ Γ and f +Nπ = u+ ≤ g+Nπ , so f ≤ g. �

Corollary 4.7. There is a smallest function f ≥ 0 that is a limit of radial
averages and satisfies ∇2( f dλ )≤ (1−w)dλ .

Proof. Combine Corollary 4.6 with Theorem 4.4. �

In the next section, we will characterize the Laplacian of the minimal
function, and discover that there is a quadrature domain hiding inside it.
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4.3. Finding the Laplacian. Suppose w is a properly supported weight
function. Let f ≥ 0 be the minimal limit of radial averages with ∇2( f dλ )≤
(1−w)dλ promised by Corollary 4.7.

By Corollary 3.2,

∇
2( f dλ )− (1−w)dλ =−dµ

for some locally finite measure µ .
The function f +N(1−w) is superharmonic, and therefore lower semi-

continuous. So, f is also lower semicontinuous, and A := { f > 0} is open.

Lemma 4.8. µ(A) = 0.

Proof. Let γ = f +N(1−w) as before. Then ∇2(γ dλ ) =−dµ .
Let x ∈ A, so γ(x)> N[1−w](x). The left-hand function in that inequal-

ity is lower semicontinuous, and the right-hand one is continuous, so it is
possible to choose a small radius r > 0

min
y∈Br(x)

γ(y)> max
y∈Br(x)

N[1−w](y).

If we have a superharmonic function γ on Ω, we can replace its values on
a ball B,B⊆Ω with a harmonic function that has the same boundary values
while preserving the function outside of that ball, and the resulting γ ′ will
still be superharmonic and γ ′ ≤ γ . See e.g. I.II.6 of Doob [1].

We carry out this operation on γ using the ball Br(x), and we get a new
function γ ′. This function still satisfies the inequality γ ′ ≥ N(1−w), be-
cause

γ
′(y)≥ min

y∈Br(x)
γ(y)> N[1−w](y) ∀y ∈ Br(x)

for y in the ball Br(x), and γ ′= γ ≥N(1−w) outside of the ball. But γ is the
minimal superharmonic function with γ ≥ N(1−w), so γ = γ ′. That means
in particular that γ is harmonic inside the ball Br(x).

If a function is harmonic on an open set, then its Laplacian is zero on that
set. So, ∇2(γ dλ )[h] = −

∫
hdµ = 0 for any function h ∈ C∞

c (Br(x)), and
that means that µ(Br(x)) = 0. That’s true for some ball around any point x,
and we can cover A by countably many such balls, so µ(A) = 0. �

We can use the Lebesgue density theorem to get rough bounds on ∂A.

Theorem 4.9. If E ⊆ Ac, then 0≤ µ(E)≤ λ (E).

Proof. We have ∇2 f ≤ (1−w)dλ , so dµ ≥ 0. That’s the lower bound.
By definition, f +N(1−w) is superharmonic, and N(1−w) is continu-

ous, so f is a limit of radial averages. If x is any point in ∂A, then

f (x) = 0≤ 1
λ (Br)

∫
Br(x)

f (y)dy.
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Therefore, f is subharmonic on average on ∂A. Use Lemma 3.13 to get
∇2( f dλ )≥ 0 on ∂A. Then, dµ = (1−w)dλ −∇2( f dλ )≤ dλ . �

Corollary 4.10. ∇2( f dx) = (1−w)1A dλ .

By the theorem, the measure µ is absolutely continuous with respect to λ ,
so there is a Radon-Nikodym derivative dµ/dλ and 0≤ dµ/dλ ≤ 1 a.e. We
choose a version with 0≤ dµ/dλ ≤ 1 everywhere.

Let ρ be the difference 1−w−dµ/dλ . Then

ρ dλ = (1−w)dλ −dµ = ∇
2( f dλ ).

We will be done if we can show that ρ = (1−w)1A almost everywhere.
By Theorem 4.8, µ(A) = 0, so ρ = 1−w almost everywhere on A. On the

other hand, we are in precisely the setting of Theorem 3.16, so we have ρ =
0 almost everywhere on { f = 0}= Ac. Therefore ρ = (1−w)1A a.e. �

4.4. A quadrature domain for Green’s functions. We are now able to
exhibit the quadrature domain, although we’re only about three-quarters of
the way to the proof that it really is one.

In the last section, we showed that, if f is a solution of the minimization
problem, then ∇2( f dλ ) = (1−w)1A dλ where A = { f > 0}. The lemma
below uses that to get a formula for f in terms of A.

Theorem 4.11. If f solves the minimization problem, then f = N
[
(w−

1)1A
]
.

Proof. Let ϕ := (w− 1)1A. As in Section 4.1, −∇2(Nϕ dλ ) = ϕ dλ , so
the distributional Laplacian of ( f −Nϕ)dλ is zero on Rd . By Lemma 3.14,
f −Nϕ is subharmonic and superharmonic, so it is harmonic.

We want to show that it’s zero. Our strategy will be to prove that it goes
to zero at infinity and use Liouville’s theorem.

We’ll prove below in Corollary 4.14 that A is always bounded. If d ≥ 3,
then the unrestricted Green’s function is |x− y|2−d/(d− 2)Cd , which goes
to zero uniformly for y ∈ A as x→ ∞. Therefore,

Nϕ(x) =
∫

G(x,y)ϕ(y)dy→ 0

and we can apply Liouville’s theorem to conclude that f = Nϕ .
What about when the dimension is smaller? In d = 2, we’ll use a similar

strategy, but we need the fact that
∫

ϕ dy = 0. Let h be a smooth, compactly
supported function which is 1 on A. Then∫

hϕ dλ = (ϕ dλ )[h] = ( f dλ )[∇2h] =
∫

f ∇
2hdλ = 0,
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because ∇2h = 0 on A and f = 0 outside A. But ϕ = hϕ , so
∫

ϕ dλ = 0. So∫
G(x,0)ϕ(y)dy = 0, and we again have

Nϕ(x) =
∫

G(x,y)ϕ(y)dy

=
∫
(G(x,y)−G(x,0))ϕ(y)dy

=
∫ 1

π
log

|x|
|x− y|

ϕ(y)dy→ 0.

In one dimension, we also want to have
∫

yϕ dy = 0. Prove that the same
way using h ∈C∞

c with h(y) = y for y ∈ A. Then G(x,y) =−1
2 |x− y|, so∫

G(x,y)ϕ(y)dy =±1
2

∫
(y− x)ϕ(y)dy

for x ≥ maxA and x ≤ minA. This is zero because the first and second
moments are zero. In each case, we conclude that f = Nϕ . �

Corollary 4.12. Let Q := A∪ {w ≥ 1}. Then N[w− 1Q] is nonnegative
everywhere and zero outside Q.

Proof. We chose our function f with ∇2( f dλ )≤ (1−w)dλ , and Corollary
4.10 tells us that ∇2( f dλ ) = (1−w)1A dλ . Therefore, (1−w)1A ≤ 1−w
almost everywhere, or in other words 0≤ (1−w)1Ac almost everywhere.

Part of the definition of a good weight function is that w = 0 or w≥ 1 at
every point, so w ∈ {0,1} almost everywhere on Ac. Therefore, on that set,
1Q = 1{w−1} = w almost everywhere, so N[w−1Q] = N[(w− 1)1A] = f .
And f is nonnegative everywhere and zero outside Q. �

This set Q is our quadrature domain, and we’ll prove that in the next
section.

4.4.1. A is bounded. We will prove that A is bounded by exhibiting a func-
tion f which is compactly supported and satisfies the conditions of the min-
imization problem. First we compute the Newtonian potential of the ball.

Lemma 4.13.

N1Br =

{
c1−|x|2/2d |x| ≤ r
G(x,0)λ (Br) |x| ≥ r

,

where c1 is a constant chosen to make the function continuous.

Proof. If |x| ≥ r, then the function y 7→ G(x,y) is harmonic on Br, so∫
G(x,y)1Br dy is equal to G(x,0) times the measure of Br.
Let h(x) := N1Br + |x|2/2d. This function is continuous. The distribu-

tional Laplacian of h is zero inside the ball, because ∇2N1Br = −1Br and
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∇2|x|2 = 2d. By Lemma 3.14 applied to both h and −h, it is both subhar-
monic and superharmonic, so h is harmonic inside the ball.

The Newtonian potential of the ball is radially symmetric, and so is
|x|2/2d, so the value of h on the sphere |x|= r is some constant. By the max-
imum principle, h is constant inside the ball, so N1Br = c1−|x|2/2d. �

Corollary 4.14. Let c = 1∨maxw. Let the support of w be contained in
BR. Then A⊆ Bc1/dR.

Proof. Let h be N[c1BR]−N[1
B1/d

c R
]. This is continuous, and h+N(1−w)

is the Newtonian potential of a nonnegative function and therefore super-
harmonic. The lemma tells us that

h =


c1− (c−1)|x|2/2d |x| ≤ R
c2 + cG(x,0)λ (BR)+ |x|2/2d R≤ |x| ≤ c1/dR
0 |x| ≥ c1/dR.

Here c1,c2 are determined by continuity. The radial derivative of h is

∂h
∂ r

=


−(c−1)r/d r ≤ R
r(1− cRd/rd)/d R≤ r ≤ c1/dR
0 r ≥ c1/dR

where r = |x|. This is always less than or equal to zero, and h is zero for
large x, so h is nonnegative. By the choice of f , f ≤ h, so A⊆ Bc1/dR. �

4.5. Extending to all integrable subharmonic functions. Here is the grand
climax of this chapter, Sakai’s Lemma 5.1 [6]. For completeness, we present
the proof and various minor results that are used.

Theorem 4.15 (Sakai’s Lemma 5.1). Let Q be an open bounded set. If there
is a function ϕ ∈ L∞(Q) with Nϕ ≥ 0 on Q and Nϕ = 0 on Qc, then∫

sϕ dy≥ 0

for every superharmonic function s on Q with
∫

s1{s>0} dx < ∞.

Note. This says in particular that, if a linear functional ϕ on L1(Q) is non-
negative on Gx for x ∈ Rd and −Gx for x ∈ Qc, then it’s nonnegative on all
superharmonic functions in L1(Q).

Proof. The basic idea is approximation, but it’s delicate and relies on a tight
estimate of the modulus of continuity of Nϕ . Without loss of generality, we
can assume that |ϕ| ≤ 1 everywhere.

Let s be an integrable superharmonic function on Q. Let sn := s ∗ψn be
the approximations defined in Theorem 3.1. As before, each function sn is
defined on {d(x,Ωc)> 1/n}, and it’s smooth and superharmonic.
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Let h j ∈C∞
c (Q) be test functions 0 ≤ h j ≤ 1 converging pointwise to 1.

We will choose them carefully later. The function s∨ 0 is integrable by
assumption. Use Fatou’s lemma on the nonnegative functions (s∨0)−sh jϕ

and their limit (s∨0)− sϕ to get the inequality

limsup
j→∞

∫
sh jϕ dy≤

∫
sϕ dy.

Each h j is supported on a compact subset of Q, so we can introduce the
approximations sn, and we get

limsup
j→∞

lim
n→∞

∫
snh jϕ dy≤

∫
sϕ dy.

Here snh j are smooth and compactly supported in Q when n is large enough
for a fixed j. By Lemma 2.1 and the fact that Green’s function is symmetric,∫

snh jϕ dy =
∫

N(−∇
2)(snh j)ϕ dy =

∫
(−∇

2)(snh j)Nϕ dy.

So we have the inequality

limsup
j→∞

lim
n→∞

∫
(−∇

2)(snh j)Nϕ dy≤
∫

sϕ dy.

A smooth superharmonic function has a negative Laplacian, so ∇2sn ≤ 0,
and by our assumption, Nϕ ≥ 0. Also h j ≥ 0. Therefore,

(−∇
2)(snh j)Nϕ ≥ (−∇

2)(snh j)Nϕ +∇
2(sn)h jNϕ

=−2∇ · (sn∇(h j)Nϕ)+2sn(∇h j ·∇Nϕ)+ sn∇
2(h j)Nϕ.

The divergence goes away when we integrate, so∫
(−∇

2)(snh j)Nϕ dy≥
∫

2sn(∇h j ·∇Nϕ)+ sn∇
2(h j)Nϕ dy.

Our goal now is to choose h j so that the integral is uniformly bounded above
by C0/ j, where C0 is some constant.

A bound on ∇Nϕ and Nϕ . For y ∈ Q, let δ = d(y,Qc), and pick a
point x ∈ Qc with d(y,x) = δ . Our assumption says that Nϕ is nonnega-
tive everywhere and zero on Qc, which means that the gradient is zero on
Qc. By Lemma 4.17 below, there is a constant C > 0 with∣∣∇Nϕ(y)

∣∣= ∣∣∇Nϕ(y)−∇Nϕ(x)
∣∣≤Cδ log1/δ

if δ = |y− x| is sufficiently small. The constant depends only on the diam-
eter of Q. The bound on the gradient implies a bound on Nϕ:

|Nϕ(y)|= |Nϕ(y)−Nϕ(x)| ≤
∫

δ

0
Ct log1/t dt ≤Cδ

2 log1/δ ,

where the last inequality is true if δ < 1/e.
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We choose test functions h j as in Lemma 4.18. We have |∇h j| ≤ 1/( jδ log1/δ )

and |∇2h j| ≤ |∂ 2h j/∂y2
1|+ · · ·+ |∂ 2h j/∂y2

d| ≤ 2d/( jδ 2 log1/δ ). Therefore,

|∇h j||∇Nϕ| ≤C/ j and |∇2h j||Nϕ| ≤ 2Cd/ j

and

limsup
n→∞

∣∣∣∣∫ 2sn(∇h j ·∇Nϕ)dy
∣∣∣∣≤ 2C

j

∫
h j>0
|s|dy

limsup
n→∞

∣∣∣∣∫ sn(∇
2h jNϕ)dy

∣∣∣∣≤ 2Cd
j

∫
h j>0
|s|dy.

Set C0 = 2(1+d)C. Then, as promised earlier,
∫

snh jϕ dy≥−C0/ j.
Take n→ ∞ and then take j→ ∞ to see that∫

sϕ dy =− lim
j→∞

lim
n→∞

∫
∇

2(snh j)Nϕ dy≤ 0

by the earlier calculation. �

We therefore finally have the theorem:

Theorem 4.16. A properly supported weight function has a quadrature do-
main.

Proof. Let Q be the set from Corollary 4.12. Then N(w−1Q) is nonnega-
tive and zero outside Q. By Theorem 4.15, for any integrable superharmonic
function s on Q,

∫
s(w−1Q)dy≥ 0, so∫

swdy≥
∫

Q
sdy.

This is exactly the quadrature domain property, so Q is a quadrature domain.
�

4.6. Denouement 1: log-Lipschitz continuity. We owe two lemmata that
we must prove. First, a lemma about the modulus of continuity of the New-
tonian potential, which we use to bound both the potential and its first de-
rivative.

The lemma states, roughly, that ∇Nϕ is very close to being Lipschitz.

Lemma 4.17 (Günther, [2], §13). Suppose ϕ is bounded and measurable
and zero outside a bounded set E. If y,y′ ∈ Rd and |y− y′|= ε , then∣∣∣∣∂Nϕ

∂yi
(y)− ∂Nϕ

∂yi
(y′)
∣∣∣∣= O

(
ε log

1
ε

)
.

The constant in the O-notation depends only on max |ϕ|and diamE.
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Proof. Write both terms as derivatives of integrals, move them both under
the same integral sign, and move the derivative inside the integral, to get∣∣∣∣∂Nϕ

∂yi
(y)− ∂Nϕ

∂yi
(y′)
∣∣∣∣= ∣∣∣∣∫

Ω

[
∂G
∂yi

(x,y)− ∂G
∂yi

(x,y′)
]

ϕ(x)dx
∣∣∣∣ .

This is justified because ∂G/∂yi is locally integrable and ϕ is bounded.
Let A = {x ∈ Ω : |x− y|< 2ε}, and break the integral on the last line up

into
∫

A and
∫

E\A. The first derivatives of G(x,y) are O(||x− y||1−d), so∫
A

[
∂G
∂yi

(x,y)− ∂G
∂yi

(x,y′)
]

ϕ(x)dx = O
(∫

B2ε (y)
||x− y||1−d dx

)
= O(ε).

For the part outside of A, we estimate the integrand with derivatives. By
the mean value theorem, there is a point y′′ on the line segment between y
and y′ with ∂G

∂yi
(x,y)− ∂G

∂yi
(x,y′) = (y− y′) ·∇∂G

∂yi
(x,y′′). The second deriva-

tives of G(x;y) are O(||x− y||−d), so that dot product is at most

|y− y′|×
∣∣∣∣∇∂G

∂yi
(x,y′′)

∣∣∣∣= O(ε||x− y′′||−d).

When x is not in A, ||x− y|| ≥ 2ε , so

||x− y′′|| ≥ ||x− y||− ||y− y′′||
≥ ||x− y||− ||y− y′|| ≥ 1

2 ||x− y||.

Therefore ||x−y′′||−d ≤ 2d||x−y|| and O(||x−y′′||−d) =O(||x−y||−d), and
we have the more concrete bound |(y− y′) ·∇∂G

∂yi
(x,y′′)| = O(ε||x− y||−d),

where the bound depends only on max |ϕ|.
If E \A is empty, the integral over it is zero. Otherwise, let Br1 \Br0 be the

minimal closed annulus containing E \A, i.e. r0 := inf{|x− y| : x ∈ E \A}
and r1 := sup{|x− y| : x ∈ E \A}, with r0 ≥ 2ε and r1 ≤ diamE.

We can estimate the integral over E \A by∫
E\A

∣∣∣∣(y− y′) ·∇∂G
∂yi

(x,y′′)
∣∣∣∣ ϕ(x)dx =

∫
E\A

O(ε||x− y||−d)dx

≤ O
(∫ r1

r0

εr−d Cdrd−1 dr
)

= O
(

ε log
r1

r0

)
.

The constants in the O-notation depend only on max |ϕ|.
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But we know that r1/r0 ≤ diamE/2ε = O(1/ε), so O(ε logr1/r0) =
O(log1/ε). Combine the estimates for A and E \A to get the result:∫

E

[
∂G
∂yi

(x,y)− ∂G
∂yi

(x,y′)
]

ϕ(x)dx =
∫

A
(· · ·)ϕ(x)dx+

∫
E\A

(· · ·)ϕ(x)dx

= O(ε)+O
(

ε log
1
ε

)
= O

(
ε log

1
ε

)
.

This is the result that we want. �

4.7. Denouement 2: a smooth approximation of the distance function.
The second lemma that we owe gives us smooth test functions with reason-
able first and second derivatives.

Let ξ (t) := 1/t(log1/t). Then ξ ′(t)= (1− log1/t)ξ 2(t), so ξ is decreas-
ing on (0,1/e), and

∫ t1
0 ξ (t)dt = ∞ and

∫ t1
0 ξ ′(t)dt = −∞ for any small t1.

Also, on the interval (0,1/e), we have the upper bound |ξ ′| ≤ ξ/t.

Lemma 4.18 (Hedberg, [3], Lemma 4). Let δ denote d(x,Qc). If Q is a
bounded open set, there is a sequence h j ∈C∞

c (Q) with 0 ≤ h j ≤ 1 every-
where, h j(x) = 1 if δ > 1/ j, and∣∣∇h j(x)

∣∣≤ ξ (δ )

j
,

∣∣∣∣ ∂ 2

∂yi∂y j
h j(y)

∣∣∣∣≤ 2ξ (δ )

jδ
.

Proof. Let ∆Q(x) be the smooth distance function from Stein §VI.2 Theo-
rem 2 [7], quoted below as Lemma 4.19. Let the constant in that lemma be
called C.

Let H j(t) :=
∫ t

0 η1/C j(τ)dτ , where ηε is from Lemma 4.20. Our smooth
test functions will be h j(x) := H j(∆Q(x)). These are compactly supported
because ∆Q ≤Cδ and H j is zero for small enough arguments.

The gradient of this function is η j(∆Q)∇∆Q. The second derivatives are

∂ 2h j

∂xi∂x j
= η j(∆Q)

∂ 2∆Q

∂xi∂x j
+η

′
j(∆Q)

∂∆Q

∂xi

∂∆Q

∂x j
.

We plug in the bounds |η j(t)| ≤ ξ (t)/ j, |η ′j(t)| ≤ |ξ ′(t)|/ j ≤ |ξ (t)|/ jt
from the first lemma below, and the bounds δ ≤ ∆Q and |∇∆Q| ≤ C and
|∂i∂ j∆Q| ≤C/δ from the second lemma below. The resulting bounds are C
times greater than what we want, but we can get around that by multiplying
j by dCe. �
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Lemma 4.19 (Stein §VI.2 Theorem 2 [7]). Let Q be an open set. There
exists a smooth function ∆Q(x) on Q with d(x,Qc)≤ ∆Q(x)≤Cd(x,Qc) for
some positive constant C > 0, and

|∇∆Q| ≤C
∣∣∣∣ ∂ 2

∂xi∂x j
∆Q

∣∣∣∣≤ C
d(x,Qc)

.

Sketch of proof. Let the side length of a cube ω be denoted by side(ω).
The set Q can be written as a union of closed cubes with disjoint interiors
in such a way that the side length of each cube ω is a power of two, and

d(ω,Qc)≤ 8side(ω)≤ 4d(ω,Qc).

Scale up each cube around its center by a factor of 3/2. All of the cubes
are still contained in Q. If ω is a cube containing x, then side(ω)/d(x,Qc)∈
[ 1

13 ,4], and there are at most 2d cubes of a certain size containing a point,
so each point is contained in at most 6×2d cubes.

Pick h≥ 0 smooth so that h is 1 on the unit cube and 0 on the cube of side
length 3/2. Scale and translate this to get a function hω for each cube ω in
the decomposition which is 1 on ω and 0 on a slightly larger cube around ω .
The scaling multiplies the first derivatives by a factor of 1/side(ω), and the
second derivatives by a factor of 1/side(ω)2.

Let ∆Q(x) := 13∑ω a cube side(ω)hω(x). This sum is locally finite, and
it’s at least d(x,Qc). Let C := 13×6×2d× (4∨max |∇h|∨13max |∂i∂ jh|).
Then ∆Q(x)≤Cd(x,Qc), and

|∇∆Q| ≤C,

∣∣∣∣ ∂ 2∆Q

∂xi∂x j

∣∣∣∣≤ C
d(x,Qc)

which is what we want to have. �

Lemma 4.20. For ε > 0, there is a function ηε ∈C∞
c (0,ε) with 0≤ ηε ≤ εξ

and |η ′ε | ≤ ε|ξ ′| and
∫

ηε dt = 1.

Proof. Let ε < 1/e without loss of generality. Then ξ is decreasing on
(0,ε). Choose a sequence of smooth functions fn on (0,ε) that increase to
−εξ ′ ≥ 0 from below on that interval.

Let Fn(t) :=
∫

ε

t fn(τ)dτ . Then Fn→ ε(ξ (t)− ξ (ε)) pointwise, and the
integral of ξ (t) on [0,ε] is positive infinity, so

∫
ε

0 Fn(t)dt → ∞. Let n be
large enough that this integral is at least one. Then η j(t) :=Fn(t)/

∫
ε

0 Fn(t)dt
has the desired properties. �
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