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ABSTRACT. A sum of open sets is a map taking two bounded open sets
A,B and producing a new open set A⊕ B. We prove that, up to sets
of measure zero, there is only one such sum satisfying a natural list of
axioms. It is the scaling limit of the Diaconis-Fulton smash sum.
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1. SUMS OF OPEN SETS AND PHYSICAL MODELS

1.1. Sums of open sets. A sum of open sets is a binary operator ⊕ that
takes two bounded open subsets A,B ⊆ Rd and produces a new open set
A⊕B⊆ Rd , which may be unbounded.

There are many such sums, so we will add some requirements. A good
sum should be monotone, commutative, and associative. Let A,B,C be
bounded open sets. We want:

• Monotonicity. A⊆ A⊕B, and if A⊆ B, then A⊕C ⊆ B⊕C.
• Commutativity. A⊕B = B⊕A.
• Associativity when it makes sense. If A⊕ B and B⊕C are both

bounded, then (A⊕B)⊕C = A⊕ (B⊕C).
A good sum should also have some symmetry properties. If A is an open

set and x ∈ Rd , let A+ x = {a+ x : a ∈ A}. Then we ask for
• Translation invariance. (A+ x)⊕ (B+ x) = (A⊕B)+ x.

Let H ⊆ O(d) be the group of isometries that fix the unit cube. Each
such isometry is a permutation of coordinates followed possibly by changes
of sign in some coordinates. We call these cubic isometries, and we ask for
the sum to be invariant with respect to these isometries.1

• Cubic rotation invariance. If U ∈H , then (UA)⊕ (UB) = U(A⊕
B).

Finally, let λ be the usual Lebesgue measure on Rd . Our last request is
• Conservation of measure. For any bounded open sets A,B,

λ (A⊕B) = λ (A)+λ (B).

There is at least one sum that satisfies these six requirements, called the
“smash sum,” defined in [7]. We will also call it the “continuous Diaconis-
Fulton smash sum” to distinguish it from the discrete version in [2]. The
main theorem of this paper is that it is the only sum that satisfies the re-
quirements, up to sets of measure zero.

We delay the definition of the sum to Section 2. The fact that the defini-
tion makes sense is not at all trivial; it is a theorem due to Sakai [8]. For
the convenience of the reader, we give a relatively elementary proof of that
theorem in a self-contained supplement.

1This group of isometries is chosen for simplicity. We can use any group with the
following properties: first, we ask that maxU∈H |x−Ux| ≥ c|x| for some constant c > 0,
so that the proof of Lemma 1.1 will go through (possibly with an increased constant).
Second, we ask that the conclusion of Lemma 3.5 holds. For example, H can be the
isometries preserving the equilateral triangle, or the regular tetrahedron.



SMASH SUM IS UNIQUE 3

1.2. Physical models. This set of requirements is motivated by mathemat-
ical models of particle systems. These models have a boundary: some of
the space is occupied by particles, while some of it is empty. When the
local density is low, the particles stay in one place, but when the density of
particles exceeds some threshold, they move outward and enter new areas.
The models we consider are invariant under cubic isometries, at least.

One example of such a process is internal diffusion-limited aggregation,
a discrete process where particles walk randomly on a lattice until they find
an empty vertex, and they stop there; for details, see [6], [2], [7]. Another
example, this time a continuous process, is Hele-Shaw flow. Here water,
bounded by air or some other fluid, is allowed to move slowly between two
parallel plates that are very close together. Water is almost incompressible,
so the density is roughly constant, and surface tension is negligible. If more
water is injected, the boundary moves outward in a predictable way.

Both of these processes are closely related to the smash sum. The scaling
limit of internal diffusion-limited aggregation (and other similar models) is
the smash sum, as proven in [7]. The set in Hele-Shaw flow at time t is the
same as the set obtained by using smash sum to add many small balls with
total mass t centered at the injection point; see [5], especially Section 3.3.2

If one already knows that there is a sum of open sets associated with
these models, then one would expect it to conserve mass, as well as be-
ing monotone, commutative, translation invariant (since the lattice becomes
infinitely fine in the limit), and invariant under cubic isometries because
those are symmetries of the lattice. Moreover, the discrete processes are all
“abelian networks” in the sense of [1], which roughly means that the final
state does not depend on the order of events. So one would expect that the
sum should be associative, that is, independent of the order of addition.

For this reason, it seems likely that the uniqueness theorem in this paper
could be used to re-prove the scaling limits in [7] from a different direction,
by proving that a scaling limit exists and then showing that it must be a
sum of open sets satisfying the six requirements above. However, we do
not attempt this here.

We now begin the proof of uniqueness. We will first play around with
these requirements and derive some elementary consequences, and then de-
scribe a winning strategy for a solitaire game, which we call “smash game.”

2To see this it will help to know that, if a ball Bε(0) is contained in the open set
A, the quadrature domain of 1A + tδ0 is essentially equal to the quadrature domain of
1A + t1Bε

(0)/λ (Bε). This is because superharmonic functions are at least as large as their
averages on balls, so if the quadrature domain inequality holds for the second weight func-
tion, then it holds for the first one.
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1.3. Inflations and boundedness. Let Br(x) := {y ∈ Rd : |y− x| < r} be
the open ball of radius r centred at x. If E is any set, let d(x,E) := inf{|x−
y| : y ∈ E}. Let the inflation of an open set A by ε > 0 be

Aε := {x ∈ Rd : d(x,A)< ε}=
⋃
a∈A

Bε(a) =
⋃
|x|<ε

A+ x.

It is clearly an open set also.
For any sum of open sets, the inflation of the sum is contained in the sum

of the inflation. To see this, let x∈Rd , |x|< ε . Then A+x⊆ Aε ,B+x⊆ Bε .
By translation invariance and monotonicity,

(A⊕B)+ x = (A+ x)⊕ (B+ x)⊆ Aε ⊕Bε .

Taking the union over all the points |x|< ε , we have the promised inclusion

(1) (A⊕B)ε ⊆ Aε ⊕Bε .

This is the inflation inclusion.

1.3.1. Deflation. We let the deflation of an open set A be

A−ε := {x ∈ Rd : d(x,Ac)> ε}.
The deflation is also an open set, because d(x,Ac) is continuous in x.

We claim that, if A is open, then

A−ε =
⋂
|x|≤ε

A+ x.

If y is in the left set, then d(y,Ac)> ε , so y−x∈ A if |x| ≤ ε , and that means
that y is in the intersection. On the other hand, if y is not in the left set, let
z be a point in the closed set Ac with d(y,Ac) = d(y,z)≤ ε . Then z /∈ A, so
y /∈ A+ y− z and y is not in the intersection. This proves the equality.3

If |x| ≤ ε , then we have A+x⊇ A−ε , B+x⊇ B−ε . By translation invari-
ance and monotonicity, (A+x)⊕(B+x)⊇ A−ε⊕B−ε . Taking the intersec-
tion of that inclusion over all points |x| ≤ ε , we find that the deflation of a
sum contains the sum of the deflations:

(A⊕B)−ε ⊇ A−ε ⊕B−ε .

3That is not necessarily true if A is not open; for example, if A is the closed unit ball,
then the deflation of A by 1 is empty, but {x : B1(x)⊆ A} is the point {0}.
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1.4. The diameter of the sum. Let Br(x) be the open ball of radius r cen-
tered at the point x. Let Br := Br(0). We prove that the sum of two balls is
contained in a ball that’s not much larger.

Lemma 1.1. If N is greater than 2/((3/2)1/d−1), then Br⊕Br ⊆ BNr.

Proof. Suppose Br⊕Br 6⊆ BNr. Let x be a point in Br⊕Br with |x| > N.
Then the three points x,0,−x are all in Br⊕Br, by monotonicity and cubic
symmetry.4 If we inflate the sum by Nr/2, then the inflation inclusion (1)
says

(Br)Nr/2⊕ (Br)Nr/2 ⊇ (Br⊕Br)Nr/2

⊇ BNr/2(x)∪BNr/2(0)∪BNr/2(−x).

These balls are all disjoint.
The inflation of a ball Br by s is Br+s, so (Br)Nr/2 = B(N/2+1)r. By con-

servation of mass, the measure of the left side is 2(N/2+1)λ (Br). The left
side contains the right side, so the measure of the left is greater than the
measure of the right:

2
(

N
2
+1
)d

λ (Br)≥ 3
(

N
2

)d

λ (Br).

That is, the ratio of the two sides 2
3(1+ 2/N)d is at least 1. But this con-

tradicts our choice of N. We conclude that our assumption was wrong, and
Br⊕Br is a subset of BNr. �

Corollary 1.2. Any sum satisfying the requirements is bounded.

Proof. Let A,B be bounded open sets. Let r be large enough that A,B⊆ Br.
Then A⊕B⊆ BNr, which is bounded. �

Now that we know this, we can drop the requirement of boundedness in
associativity: A⊕B is always bounded, so (A⊕B)⊕C = A⊕ (B⊕C) for
any sets A,B,C.

1.5. A weaker version of the six requirements. As before, we say that
two sets A,B are essentially equal if λ (A ∆ B) = 0, and we say that A is
essentially contained in B if λ (A\B) = 0.

Let A,B,C be bounded open sets. Then a sum of open sets satisfies the
requirements in the essential sense if:

• A is essentially contained in A⊕B. If A is really contained in B,
then A⊕C is essentially contained in B⊕C.
• A⊕B is essentially equal to B⊕A.

4Here it’s enough to know that there are three points x,y,z ∈ Br⊕Br with |x− y|, |y−
z|, |x− z| ≥ c|x|, as long as we increase the bound on N by a factor of 1/c.
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• If A⊕B and B⊕C are bounded, then (A⊕B)⊕C is essentially equal
to A⊕ (B⊕C).
• If x ∈ Rd , then (A+ x)⊕ (B+ x) is essentially equal to (A⊕B)+ x.
• If U ∈H , then (UA)⊕ (UB) is essentially equal to U(A⊕B).
• The measure of the sum A⊕B is λ (A)+λ (B).

If a sum obeys the requirements in the essential sense, there is an essen-
tially equal sum that really obeys the requirements. We will prove that in
this section as Lemma 1.6. First, we introduce the idea of a bulky set.

1.6. Bulky open sets. If A is an open subset of Rd , let U (A) be the set of
open sets which are essentially equal to A. We call this the open equivalence
class of A.

We say that an set is bulky if it is an open set that contains every other set
in its open equivalence class.

Lemma 1.3. If A is an open set, then there is exactly one bulky set in U (A).

Proof. First we prove that there is at least one. Let U be the union of all
open balls with rational centers and radii that are essentially contained in A.
This is a countable union, so U is also essentially contained in A.

Let V be any set in U (A). Fix x ∈ V . Let B be a rational open ball
with x ∈ B⊆V . Then λ (B\A)≤ λ (V \A) = 0, so the ball B is essentially
contained in A. Therefore, B is one of the balls in the union defining U , and
it follows that x ∈ B⊆U . Therefore, U contains every set in U (A).

In particular, it contains A. On the other hand, we chose U so that it is
essentially contained in A. which means that they are essentially equal and
share the same equivalence class U (A) = U (U).

We have already seen that U contains every set in the open equivalence
class of A, so it is bulky. If U (A) had two bulky sets, they would have to
contain each other, which is absurd. Therefore there is exactly one. �

Let the unique bulky set that is essentially equal to A be denoted by B(A).
Two open sets A, B are essentially equal if and only if B(A) = B(B).

Lemma 1.4. A is essentially contained in B if and only if B(A)⊆B(B).

Proof. If: If B(A)⊆B(B), then A⊆B(B), and B(B) is essentially equal
to B, so A is essentially contained in B.

Only if: If A is essentially contained in B, then B(A)∪B is essentially
equal to B. By the definition of a bulky set, B(A)∪B is contained in B(B),
and so certainly B(A)⊆B(B). �

Here are some other easy consequences which we will use later.
• The measures of the sets A and B(A) are the same.
• If x ∈ Rd , then B(A+ x) = B(A)+ x.
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• If U ∈H , then B(UA) =UB(A).
• If A is bounded, then B(A) is also bounded.
• B(A) is contained in the topological closure of A.

Some remarks to clarify the idea: A point is in B(A) if and only if there
is a ball containing that point that’s essentially contained in A. We can get
examples of non-bulky sets by taking open sets and subtracting closed sets
of measure zero. For example, (0,1)\{1

2} isn’t bulky.5

We’ll need this lemma in the next section:

Lemma 1.5. If a sum of open sets obeys the requirements in the essential
sense, then B(A⊕B) = B(B(A)⊕B) = B(B(A)⊕B(B)).

Proof. We have A⊆B(A), so by the requirement of essential monotonicity,
A⊕B is essentially contained in B(A)⊕B.

Bulking does not add measure, so both sets have measure λ (A)+λ (B).
Therefore, A⊕B and B(A)⊕B are essentially equal. By earlier remarks,
the bulkings are really equal: B(A⊕B) = B(B(A)⊕B). The same proof
works on the right-hand side to give the second inequality. �

1.6.1. How to modify a sum to restore the strong requirements. Suppose
that we have a sum of open sets ⊕ that obeys the requirements in the essen-
tial sense. Let the bulking of the sum be the map A,B 7→B(A⊕B). This is
a new sum of open sets, and it satisfies the six requirements, by the lemma:

Lemma 1.6. If a sum of open sets ⊕ satisfies the six requirements in the
essential sense, then the bulking of that sum really satisfies the six require-
ments, and is essentially equal to the original sum.

Note. Here we say that two sums ⊕,⊕′ are essentially equal if, for every
open sets A,A′,B,B′ with λ (A ∆ A′) = λ (B ∆ B′) = 0, the two sums A⊕B
and A′⊕′B′ are essentially equal.

Proof. The proof that the requirements of monotonicity, commutativity,
translation and rotation invariance, and conservation of mass are satisfied is
merely to put B(·) around both sides of each essential inclusion or equality,
and then use Lemma 1.4.

The associativity property causes a little trouble. Our assumption is that
the original sum is essentially associative:

5But there are some non-bulky sets that aren’t open sets minus closed sets of measure
zero. Let A be an open set which is dense in the square [0,1]2 but has measure only
1/2. Let Fn := {x ∈ A : d(x,Ac) ≤ 1/n}∩ {x/2n : x ∈ Z2}. Then every point in A has a
neighbourhood that intersects only finitely many Fn, so A \

⋃
Fn is open and essentially

equal to A. If A \
⋃

Fn = E \C for some bulky open set E and closed set C, then C has to
contain all the points in the closed sets Fn, so it has to contain the boundary of A, which
has measure 1/2.



8 HANNAH CAIRNS

• Essential associativity when bounded. If A,B,C are bounded open
sets and A⊕B,B⊕C are bounded, then (A⊕B)⊕C is essentially
equal to A⊕ (B⊕C).

(We have not yet proved that an essential sum is always bounded!) We have
to prove that the bulking of the sum is associative:

• Associativity for the bulky sum. If A,B,C are bounded open sets
and B(A⊕B),B(B⊕C) are bounded, then B(B(A⊕B)⊕C) =
B(A⊕B(B⊕C)).

If B(A⊕B) is bounded, then certainly A⊕B is also bounded, and simi-
larly for B⊕C. Therefore, we can use essential associativity, and (A⊕B)⊕
C is essentially equal to A⊕ (B⊕C).

So, B((A⊕B)⊕C) = B(A⊕ (B⊕C)) for any three open sets A,B,C
with A⊕B, B⊕C bounded.

Once we know this lemma, we use Lemma 1.5, Lemma 1.4, and then
Lemma 1.5 again to get

B(B(A⊕B)⊕C) = B((A⊕B)⊕C)

= B(A⊕ (B⊕C))

= B(A⊕B(B⊕C))

Therefore, the bulking of the sum is associative, and the proof for all the
other six requirements is straightforward.

Let A,B,A′,B′ be bounded open sets with A essentially equal to A′ and B
essentially equal to B′. Then Lemma 1.5 tells us that

B(A⊕B) = B(B(A)⊕B(B)) = B(B(A′)⊕B(B′)) = B(A′⊕B′),

so the bulked sum B(A⊕B) is essentially equal to A′⊕B′. �

1.6.2. From now on, we assume our sum is bulky. From now on, we will
assume that we have made the replacement described in Section 1.6.1, and
our new sum of open sets satisfies all six requirements, plus a seventh:

• Bulkiness. The sum of any two sets A⊕B is bulky.
We’ll prove that there is only one sum that satisfies all seven requirements,
namely the smash sum.

If we have a sum ⊕′ of open sets that satisfies the six requirements in the
essential sense, the sum is essentially equal to the smash sum, in the sense
that A⊕B is essentially equal to A⊕′B for any bounded open sets A,B.
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2. THE DEFINITION OF THE DIACONIS-FULTON SUM

2.1. Preliminary setup. Let Ω⊆Rd be an open set and Q⊆Ω be an open
subset.

Recall that a function s taking values in R∪{−∞} is superharmonic on Q
if it is locally integrable and lower semicontinuous on Q, and

1
λ (Br)

∫
Br(x)

s(y)dy≤ s(x)

for x ∈ Q and sufficiently small r > 0.

2.1.1. Quadrature domains. Let w≥ 0 be a bounded measurable function.
We will say that a quadrature domain for w is an open set Q where∫

Q
sdx≤

∫
swdx

for every function s that is both superharmonic and integrable on Q.

2.1.2. Existence and uniqueness. We use theorems from Sakai [8], which
are proven in the supplement.

Theorem 2.1 (Sakai). If w,w′≥ 0 are two bounded measurable weight func-
tions with w ≤ w′, and Q and Q′ are quadrature domains for w and w′

respectively, then Q is essentially contained in Q′.
If Q and Q′ are quadrature domains for the same bounded measurable

weight function w≥ 0, then Q is essentially equal to Q′.

Proof. The first statement is Lemma 3 in the appended supplement, and the
second one is Corollary 4 (or follows immediately).

Theorem 2.2 (Sakai). If w ≥ 0 is a bounded measurable weight function
that is greater than or equal to one on some bounded open set and zero
outside it, then there is a bounded quadrature domain for w.

Proof. This is Theorem 33 in the supplement.

In particular, if we choose w = 1A +1B, where A,B are bounded open
sets, then there is a bounded quadrature domain Q for w, and any other
quadrature domain for w is essentially equal to Q.

2.2. Definition of the sum. If Q is a quadrature domain for w, then B(Q)
is also a quadrature domain for w, because every integrable superharmonic
function on B(Q) is also integrable and superharmonic on Q.

Therefore, every weight function that satisfies the conditions in Theorem
2.2 has a bulky quadrature domain, which is unique by Theorem 2.1 and
Lemma 1.3.
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Definition. If A and B are bounded open sets, then the Diaconis-Fulton
smash sum is the unique bulky quadrature domain for 1A +1B.

We will denote the smash sum by A & B.

Theorem 2.3. Diaconis-Fulton smash sum satisfies all the requirements.

Proof. Let A,B be bounded open sets. Let x ∈ Rn. If s is an integrable
superharmonic function on (A & B)+ x, then∫

(A&B)+x
sdy≤

∫
A+x

sdy+
∫

B+x
sdy,

so (A & B)+ x is a bulky quadrature domain for 1A+x +1B+x. By unique-
ness, it’s equal to (A+x)& (B+x). Therefore the sum is translation invari-
ant. Rotation and reflection invariance follows in the same way, and so does
commutativity.

Conservation of mass is easy: ±1 is harmonic, so∫
A&B

1dx≤
∫

A
1dx+

∫
B

1dx and
∫

A&B
−1dx≤

∫
A
−1dx+

∫
B
−1dx.

Therefore, λ (A & B) = λ (A)+λ (B) and the sum conserves mass.
Let A,B,C be bounded open sets. If s is an integrable superharmonic

function on (A & B)&C, then∫
(A&B)&C

sdx≤
∫

A&B
sdx+

∫
C

sdx≤
∫

A
sdx+

∫
B

sdx+
∫

C
sdx.

Therefore, (A & B)&C) is a quadrature domain for 1A +1B +1C, but so is
A & (B &C). So they’re equal and the sum is associative.

If w≤ w′ are two weight functions that satisfy the conditions in Theorem
2.2, then by Theorem 2.1, the bulky quadrature domain of w is essentially
contained in the bulky quadrature domain of w′. By Lemma 1.4, it is really
contained.

Let A,B be bounded open sets. Then A,A & B are bulky quadrature
domain for 1A ≤ 1A + 1B, so A ⊆ A & B. Let A,B,C be bounded open
sets with A ⊆ C. Then A & B,C & B are bulky quadrature domains for
1A +1B ≤ 1C +1B, so A & B ⊆ C & B. So monotonicity holds, and that’s
the last one. �

In the rest of this paper, we will prove that any sum that satisfies all the
requirements is essentially equal to the Diaconis-Fulton smash sum.
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3. UNIQUENESS OF THE SMASH SUM

Let A⊕B be some sum that satisfies the six requirements in the strong
sense, and is also bulky. We will prove that the sum satisfies∫

A⊕B
sdx≤

∫
A

sdx+
∫

B
sdx

for any integrable superharmonic function s on A⊕B.

3.1. Smash game. We introduce a solitaire game, smash game. Imagine
Rd is a large dining room table. A bounded open set A is on the table, and
you are holding one bounded open set B in your hand.

You are given a small ε > 0 and δ > 0, and a superharmonic function
s defined on the inflation of A⊕B by δ . This function is nonnegative and
smooth, and its derivatives of all orders are bounded. It’s really as nice as
possible.

You can make four kinds of moves, which are described in Section 3.3.
Your progress in the game is tracked as follows:

• The current sum is the sum of the table set and all the hand sets.
This starts out at A⊕B, and all the moves will decrease it or leave it
unchanged.
• The current mass is the measure of the current sum, and the mass in

the hand is the sum of the measures of the hand sets.
• The total s integral is

∫
A sdx+∑

m
j=1
∫

B j
sdx.

You lose the game if you decrease the current mass by more than ε , or if
you increase the total s integral by more than ε . You win the game if you
haven’t lost yet, and the mass in your hand is less than ε .

3.2. The consequence of winning. If you can win smash game, then the
quadrature domain inequality holds for all sufficiently nice functions s.

Theorem 3.1. If you can win smash game for any ε > 0, then∫
A⊕B

sdx≤
∫

A
sdx+

∫
B

sdx.

Proof. Play smash game until we win. Let the table set at the end of the
game be A′. The current sum decreases monotonically over the course of
the game, so the final table set is contained in A⊕B.

The current mass is at least λ (A)+ λ (B)− ε and the total mass of the
hand sets is less than ε , so the final table mass is at least λ (A)+λ (B)−2ε .
Because s is bounded, we get

∫
A⊕B sdx ≤

∫
A′ sdx+ 2ε sups. You won the
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game, so the total s integral isn’t more than
∫

A sdx+
∫

B sdx+ ε . Therefore∫
A⊕B

sdx≤
∫

A′
sdx+2ε sups

≤
∫

A
sdx+

∫
B

sdx+ ε +2ε sups.

Now let ε → 0 to get the inequality
∫

A⊕B sdx ≤
∫

A sdx +
∫

B sdx for any
smooth, nonnegative superharmonic function s defined on some set (A⊕
B)δ . �

3.3. The four moves of the smash game. Here are the four moves of
smash game.

3.3.1. Replace a hand set by finitely many disjoint balls. The first move
lets us throw away a hand set B and replace it by finitely many disjoint balls
b1, . . . ,bn with b1⊕·· ·⊕bn ⊆ B.

This move decreases the current sum or leaves it the same by monotonic-
ity. The total s integral decreases or stays the same, because ∑ j

∫
b j

sdx ≤∫
B sdx. However, the current mass will decrease by λ (B)−∑ j λ (b j).

3.3.2. Shrink the table set. The second move lets us replace the table set A
by an open subset A⊆ A′. Again, the current sum and total integral decrease
or stay the same, but we may lose some mass.

3.3.3. Smash a hand set into the table set. We can only use this move if the
table set is bulky.

Let A be the table set. Let C ⊆ A be an open set with a boundary of
measure zero. Let B be a set in the hand.

The third move lets us throw away B and replace it by B′ := (B⊕C)\C.
The current sum stays the same for this move. To see this, we use the
lemma:

Lemma 3.2. Let E be a bulky bounded open set. Let C be bounded and
open. If ∂C has measure zero, then

(E \C)⊕C = E.

Proof. Let E ′ := (E \C)⊕C. Then (E \C)∪C ⊆ E ′ ⊆ E, so E ′ ∆ E ⊆ ∂C,
which has measure zero. The sum of two sets is bulky, and E is bulky by
assumption, so by Lemma 1.3, E ′ = E. �

Putting E = A, we get the equality (A \C)⊕C = A. Putting E = B⊕C
gives B′⊕C = B⊕C. Therefore,

B⊕A = B⊕C⊕ (A\C) = B′⊕C⊕ (A\C) = B′⊕A.
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So the current sum doesn’t change when we replace B by B′, and that
means that the current mass doesn’t change either. On the other hand, this
move may increase the total s integral.

3.3.4. Move part of a hand set to the table. We can only use this move if
the boundary of the table set has measure zero.

Let A be the table set. Let B be a hand set. The fourth move lets us
replace B by B∩A and change the table set to A⊕ (B\A).

This doesn’t change the total set sum, because by Lemma 3.2,

B⊕A = (B∩A)⊕ (B\A)⊕A = (B∩A)⊕ (A⊕ (B\A)).

It doesn’t change the total s integral either, because ∂A has measure zero.
So this move creates no problems, and it reduces the mass in the hand by
λ (B\A).

3.4. The cookie-cutter smash.

3.4.1. A moment to consider our strategy. How can we win smash game?
We need to rearrange the mass in the hand so that it’s outside the table set,
and then use the fourth move to get rid of it.

If you didn’t have to worry about the total s integral, you could get rid of
all the mass in the hand in two moves. Use the third move to smash B into
the whole table set, which replaces B by (B⊕A) \A. Then use the fourth
move to put it all down on the table.

We want to bound the increase in the total s integral, but we also want to
move mass outside of the table set. The compromise between these goals is
the cookie-cutter smash, which is defined below.

3.4.2. Definition of the cookie-cutter set. Recall that a cubic isometry is an
isometry that preserves the cube [−1,1]d , and the group of those isometries
is called H .

If x is a point in Rd , let Ux be the map that takes y ∈ Rd to U(y− x)+ x.
Let A be an open set. Let x ∈ Rd,R > 0. Then the cookie-cutter set for
x,R,A is

C (x,R,A) := BR(x)∩
⋂

U∈H

UxA.

The intuitive picture in two dimensions is that we start with a disc of clay
BR(x) and then cut out a shape by pressing the cookie-cutter A down in all
|H |= 8 different orientations.

We say that a set E has cubic symmetry around a point x ∈Rd if UxE = E
for U ∈H . The cookie-cutter set always has cubic symmetry.

The set C (x,R,A) is an open set contained in A. If the topological bound-
ary of A has measure zero, then ∂C (x,R,A) ⊆ ∂BR(x)∪

⋃
Ux∂A also has

measure zero. That means that we can use it to do the third move.
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3.4.3. The cookie-cutter smash. We pick a ball Br(x) in the hand and a
radius R ∈ (r,δ/2N). Then we use the third move to smash Br(x) into
C (x,R,A). This is a cookie-cutter smash.

We bound the increase in the total s integral with the following lemma.

Lemma 3.3. Suppose the boundary of the table set A has measure zero.
Let Br(x) be a ball in the hand. Let R ∈ (r,δ/2N) and x ∈ A. Let C :=
C (x,R,A). Let E be the smash set, (Br(x)⊕C )\C . Then∫

E
sdy≤

∫
Br(x)

sdy+CsR3
λ (Br).

Here Cs depends only on s.

Proof. By translation invariance and Lemma 1.1, the smash set is contained
in the ball BNR(x) ⊆ (A⊕B)δ/2, and s and all its derivatives are uniformly
bounded on that set. Let x = 0 for convenience of notation. We can expand
the superharmonic function in a Taylor series around x = 0:

s(y) = P(y)+Q(y),

where P(y) is the second-order Taylor approximation, and |Q(y)| ≤ C|y|3.
The constant depends only on the derivatives of s.

If f is any function and E is a set with cubic symmetry,∫
E

f dy =
1
|H | ∑

U∈H

∫
UE

f dy =
∫

E

1
|H | ∑

U∈H
f (Uy)dy =

∫
E

f ca dy,

where f ca := |H |−1
∑U∈H f (Uy). Call f ca the cubic average of f . Both

of the sets E and Br have cubic symmetry, so∫
E

sdy−
∫

Br

sdy =
∫

E
sca dy−

∫
Br

sca dy

=
∫

E
Pca dy−

∫
Br

Pca dy+
∫

E
Qca dy−

∫
Br

Qca dy.

Let a := s(0) and b := −∇2s(0)/d. Here b ≥ 0 because s is super-
harmonic. Then P is the power series of s to third order, so P(0) = a
and −∇2P(0)/d = b. By Lemma 3.5 below, the cubic average of P(y) is
a−b|y|2. Therefore,∫

E\Br

Pca dy≤ (a−br2)λ (E \Br) = (a−br2)λ (Br \E)≤
∫

Br\E
Pca dy.

Here we are using |y| ≥ r on E \Br and |y| ≤ r on Br \E. In the middle
step, we recall that E and Br have the same mass, so λ (E \Br) = λ (Br \E).
Adding

∫
E∩Br

Pca dy to both sides, we find that
∫

E Pca dy−
∫

Br
Pca dy≤ 0.
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Therefore, the difference of the s integrals is at most∫
E

Qca dy−
∫

Br

Qca dy≤
∫

E
|Qca|dy+

∫
Br

|Qca|dy≤ 2C(NR)3
λ (Br).

That’s the bound that we wanted, with Cs := 2N3C. �

Corollary 3.4. If Br(x) is a ball in the hand and R ∈ (r,δ/2N), the cookie-
cutter smash increases the s integral by at most CsR3λ (Br).

Proof. When we do the cookie-cutter smash, it replaces Br(x) by E, and so
the s integral changes by ∫

E
sdx−

∫
Br(x)

sdx.

The lemma tells us that this is bounded above by Csλ (Br)R3, so the total s
integral doesn’t increase by more than that. �

So the cookie-cutter smash will only increase the s integral by the mass
of the ball times the third power of R. We still owe an easy technical lemma:

Lemma 3.5. If P is a polynomial of degree two or less, then

Pca = P(0)+∇
2P(0)

|y|2

d
.

Proof. Recall the definition of the cubic average, f ca := |H |−1
∑U∈H f (Uy).

There are seven kinds of monomials of degree less than three: 1, yi, y2
i ,

and yiy j. Here i, j denote distinct indices.
The cubic averages of yi and yiy j are always zero. Let V be the isometry

that takes (. . . ,yi, . . . ,y j, . . .) to (. . . ,y j, . . . ,−yi, . . .). Let h be one of the
above monomials. Then

h(y) h(V y) h(V 2y) h(V 3y)
yi y j −yi −y j

yiy j −yiy j yiy j −yiy j

The rows add up to zero, so

∑
U∈H

h(Uy) =
1
4

3

∑
n=0

∑
U∈H

h(V nUy) = 0

and the cubic average is zero. For 1, the cubic average is 1. For y2
i , the cubic

average is (y2
1 + · · ·+ y2

d)/d. Therefore, for any monomial of degree three
or less,

hca(y) = h(0)+∇
2h(0)

|y|2

2d
.
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Add this up for every monomial in P to get the identity

Pca(y) = P(0)+∇
2P(0)

|y|2

2d
.

This is what we wanted. �

3.5. The first two moves: the bookkeeping. We can only do the cookie-
cutter move when the table set is bulky and has a boundary of measure zero,
and the hand sets are small balls. We’ll use the first and second moves to
get into that situation. This is possible by the lemmas:

Lemma 3.6. Let η > 0. If A is a bounded open set, there is a bulky open set
A0 ⊆ A with λ (A\A0)< η so that the boundary of A0 has measure zero.

Proof. The map t 7→ λ (A−t) is bounded and monotone, so it’s continu-
ous almost everywhere. Let t0 be a point of continuity for this decreasing
function with λ (A−t0)> λ (A)−η . Then λ (

⋂
s<t0 A−s) = A−t0 .

Let A0 be the bulky set in the equivalence class of A−t0 . Then A0 ⊆ A−s

when s < t0, so ∂A0 ⊆ (
⋂

s<t0 A−s)\A0, which is the difference of two sets
with the same measure. Therefore, λ (∂A0) = 0. �

Lemma 3.7 (Special case of the Vitali covering theorem). Let B be a bounded
open set. Let η > 0,R> 0. There are disjoint open balls b1, . . . ,bm⊆ B with
radius less than R so that the measure of λ (B\ (b1∪·· ·∪bm))< η .

Proof. This is well known. See for example [3], Theorem 1.26. �

Before the n-th cookie-cutter move, we’ll shrink the table set by a small
amount to be chosen later using Lemma 3.6.

When we have to break down the hand into balls smaller than R, we’ll use
the first move and the lemma above to replace all the hand sets with balls.
The n-th time we do the first move, we choose η = ε/2n+1 in Lemma 3.7,
so that the total lost mass from the first move is less than ε/2.

Note that the number of balls in the hand may become very large.

3.6. The cookie-cutter move always makes progress. If E is some open
set in Rd , we say that its second moment is

∫
E |y|2 dy. This is the same as its

‘moment of inertia’ in two dimensions.
If A is the table set and B1, . . . ,Bm are the hand sets, then the total second

moment is
∫

A |y|2 dy+∑
m
j=1
∫

B j
|y|2 dy. All the sets in the game are contained

in the starting sum A⊕B, so the total second moment is never more than
(λ (A)+λ (B)) rad(A⊕B)2. Here rad(E) is the radius {|x| : x ∈ E}.

We remember some facts about the second moment. If a ball of radius r
is centered at zero, then its second moment is∫

Br

|y|2 dy = dλ (B1)
∫ r

0
ρ

2×ρ
d−1 dρ =

d
d +2

r2
λ (Br).
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If the center of mass of a set E is x, then its second moment is

|x|2λ (E)+
∫

E−x
|y|2 dy.

3.6.1. The effect of a cookie-cutter move. The next lemma says essentially
that a cookie-cutter move either increases the second moment, or it moves
measure outside of the table set.

Lemma 3.8. Let 0 < R < δ/2. Suppose that we do a cookie-cutter move,
smashing a ball Br(x) with r < R into C (x,R,A) to get a new set E.

Let δσ be the change in second moment during the move. Let µ = λ (Br)
be the mass of the ball, and let ν = λ (E \ A) be the mass that’s moved
outside of the set by the cookie-cutter move. Then

δσ + |H |R2
ν ≥ 2

d +2
R2

µ.

Proof. The second moment of the ball was(
d

d +2
r2 + |x|2

)
µ.

The measure of the new set E is the same as the mass of the ball µ , and its
centre of mass is x by the cubic symmetry. The second moment of E− x is
at least R2λ ((E− x)\BR), so∫

E
|y|2 dy = |x|2µ +

∫
E−x
|y|2 dy≥ |x|2µ +R2

λ (E \BR(x)).

So the change in total second moment is

δσ ≥ R2
λ (E \BR(x))−

d
d +2

r2
λ (Br)

≥ R2
(

λ (E \BR(x))−
d

d +2
λ (Br)

)
.

By definition, the set E is disjoint from the cookie-cutter set, which is
BR(x)∩

⋂
U∈H UxA. Therefore E ∩BR(x)⊆

⋃
U∈H (UxA)c, and

λ (E∩BR(x))≤ λ

(
E ∩

⋃
U∈H

(UxA)c

)
≤ ∑

U∈H
λ (E \UxA) = |H |λ (E \A).

So λ (E \BR(x))≥ λ (E)−|H |λ (E \A) = λ (Br)−|H |λ (E \A).
Substituting this in the inequality above, we get

δσ ≥ R2
(

2
d +2

λ (Br)−|H |λ (E \A)
)
,

and rearranging gives us the result. �
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Corollary 3.9. Let R> 0. Suppose that the mass in the hand is m, and every
set in the hand is a ball of radius less than R. For each ball currently in the
hand, we carry out the following steps:

1. Use the second move to shrink the table set by a small amount so
that it’s bulky and its boundary has measure zero, as in Section 3.5.

2. Do a cookie-cutter move, smashing Br(x) into C (x,R,A) to get a set
E.

3. Use the fourth move to add E \A to the table, leaving E ∩A in the
hand.

Let the total change in second moment from the cookie-cutter move be
∆σ , the total change from the second move be ∆σ ′, and the total decrease
in mass in hand from the fourth move be ∆m. Then

∆σ +∆σ
′+ |H |R2

∆m≥ 1
d +2

R2m.

The total s integral increases by at most CsR3m.

Proof. Apply Lemma 3.8 to each move and add up the inequalities to get

∆σ + |H |R2
∆m≥ 2

d +2
R2m.

The second moment goes down every time we shrink the table set, but we
can make the loss arbitrarily small. If we choose the “small amount” in step
1 to be

1
2n+1 min

{
ε,

R2m
(d +2) rad(A⊕B)2

}
where n starts at one at the start of the game and increases every time we
use the second move, then ∆σ ′ ≥−R2m/(d +2). Adding this inequality to
the one above gives the result we wanted.

The total s integral increases by at most Csλ (Br)R3 at each step, which
means that the whole process increases it by at most CsmR3. �

3.7. How to win smash game. We will now give a strategy for smash
game which proves by construction that it can always be won.

Recall that we start with a table set A, a hand set B, a small positive
number ε , and a smooth, nonnegative superharmonic function s defined
on some set (A⊕ B)δ , where δ > 0. We have to get the mass in hand
below ε without increasing the total s integral by more than ε , and without
decreasing the current mass by more than ε .
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3.7.1. The strategy. Let Rn ∈ (0,δ/2N) be a sequence satisfying ∑R2
n =

∞, but ∑R3
n < ε/2Csλ (B), where Cs is the constant in Lemma 3.3. For

example, ∑n−3/2 is less than 3, so we could take Rn to be either δ/2N or
ε/6Csλ (B)n1/2, whichever is smaller.

We repeat the following steps until the mass in hand is below ε . On the
n-th round:

• Break each hand set into balls of radius less than Rn, as in Section
3.5.
• Then carry out the steps in the statement of Corollary 3.9 to smash

all the balls into cubically symmetric subsets of the table set.
The mass in hand at the start of the round is at most λ (B), so each round

increases the total s integral by at most CsεR3
nλ (B). We’ve chosen the num-

bers Rn so that the sum of this over all n is less than ε .
The total decrease in the current mass over all rounds is also less than ε ,

because the losses from the first two moves are bounded by ∑ε/2n+1 = ε/2
and the other two moves don’t lose mass. These two paragraphs together
tell us that, if we play this way, we’ll never lose. The only way we can fail
to win is if the game never ends.

3.7.2. The strategy works. Here we’ll prove that the strategy does always
win after a finite number of moves.

Lemma 3.10. The strategy above always wins smash game.

Proof. Let the total second moment at the start of the n-th round be σn, and
similarly let the mass in hand at the start of the round be mn. By Corol-
lary 3.9,

σn+1−σn + |H |R2
n(mn−mn+1)≥

1
d +2

R2
nmn.

If we haven’t won by time M, then mn ≥ ε for 1 ≤ n ≤ M. The second
moment is bounded by σb := (λ (A)+λ (B)) rad(A⊕B)2, and Rn < δ and
mn are decreasing with m1 = λ (B), so

σb + |H |δλ (B)≥ ε

d +2

N

∑
n=1

R2
n.

Remember that we chose the radii Rn so ∑R2
n = ∞. Let M be so large that

∑
M
n=1 R2

n is greater than (d +2)(σb + |H |δλ (B))/ε . If the game continues
for M rounds, then the above inequality will be violated, which is a contra-
diction. We never lose the game with our strategy, so the game must have
been won before then. �
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3.7.3. The sum is a quadrature domain. We now know that we can win
smash game, so we can use Theorem 3.1 to prove the quadrature domain
inequality for smooth superharmonic functions.

Corollary 3.11. Let A,B be bounded open sets. Then∫
A⊕B

sdx≤
∫

A
sdx+

∫
B

sdx

for any smooth superharmonic function s defined on a neighbourhood of
A⊕B.

Proof. If δ is small enough, then the domain of s contains (A⊕ B)2δ .
Of course, it’s bounded below on any compact subset of its domain, so
c := min{s(x) : x ∈ (A⊕B)δ} is finite and s− c is a smooth nonnegative
superharmonic function on (A⊕B)δ .

Start smash game with A on the table, B in the hand, and s− c as the
function. Using the strategy above, we can win the game, so Theorem 3.1
applies and we get∫

A⊕B
s− c− dx≤

∫
A

s− cdx+
∫

B
s− cdx.

By conservation of mass,
∫

A⊕B cdx = cλ (A⊕B) is the same as
∫

A cdx+∫
B cdx, so that part cancels out and we have the inequality that we want. �

We want more than that, though: we want the quadrature inequality to
hold for all integrable superharmonic functions on A⊕B. However, this
follows easily using standard approximation results together with the mono-
tonicity of the sum.

First, we prove the statement for integrable superharmonic functions on
a slightly larger domain:

Corollary 3.12. The same inequality holds if s is any integrable superhar-
monic function on a neighbourhood of A⊕B.

Proof. Pick δ with (A⊕B)δ contained in the domain of s. Let C := (A⊕
B)δ/2.

Let ψ be a smooth nonnegative bump function which is zero outside the
ball of radius one, and let sm = s∗ [mdψ(x/m)] for m > 4/δ . This is defined
for any point in (A⊕B)δ/4, and on that set, it’s smooth and superharmonic,
as well as nonnegative. Therefore,∫

A⊕B
sm dx≤

∫
A

sm dx+
∫

B
sm dx

by the previous corollary. It’s a standard result that sm→ s in L1(A⊕B), so∫
A⊕B

sdx≤
∫

A
sdx+

∫
B

sdx.
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This is the result. �
Finally, we prove the inequality for any integrable superharmonic func-

tion.

Theorem 3.13. Let A,B be bounded open sets. Then
∫

A⊕B sdx ≤
∫

A sdx+∫
B sdx for any integrable superharmonic function s on A⊕B, or in other

words, A⊕B is a quadrature domain for 1A +1B.

Proof. The inflation of the deflation of a set is contained in that set, in the
sense that (A−ε)ε ⊆ A. By the inflation inclusion (1) and monotonicity, we
have

(A−ε ⊕B−ε)ε ⊆ (A−ε)ε ⊕ (B−ε)ε ⊆ A⊕B.
Set Cε := A−ε⊕B−ε . This is a family of open sets that gets larger as the pa-
rameter ε decreases. We’ve just seen that (Cε)

ε ⊆ A⊕B, so A⊕B contains
a neighbourhood of Cε and we can use Corollary 3.12 to get the inequality
on this smaller set: ∫

Cε

sdx≤
∫

A−ε

sdx+
∫

B−ε

sdx.

Let C :=
⋃

nC1/n. Then s1C1/n → s1C pointwise, and similarly s1A−ε →
s1A and s1B−ε → s1B. All the functions are dominated by |s|, which by
assumption is integrable on A⊕B. Therefore, by dominated convergence,∫

C
sdx≤

∫
A

sdx+
∫

B
sdx.

By conservation of mass, λ (Cε) = λ (A−ε) + λ (B−ε)→ λ (A) + λ (B) as
ε → 0, so λ (C) = λ (A)+ λ (B), and C is contained in A⊕B. Therefore,
they are essentially equal, and

∫
C sdx =

∫
A⊕B sdx. So∫

A⊕B
sdx≤

∫
A

sdx+
∫

B
sdx =

∫
(1A +1B)sdx

for any integrable superharmonic function on A⊕B, which is what we have
claimed.

We recall that this is the definition of a quadrature domain for 1A +1B:∫
A⊕B

sdx≤
∫

A
sdx+

∫
B

sd =
∫

swdx

where w := 1A +1B. �

3.8. Conclusion.
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3.8.1. There’s no other sum of open sets.

Theorem 3.14. The Diaconis-Fulton smash sum is the only sum of open
sets that satisfies the six requirements plus bulkiness.

Proof. Let ⊕ be any sum of open sets satisfying the requirements, and A
and B any two bounded open sets. By Theorem 3.13, A⊕B is a quadrature
domain for 1A +1B.

By Theorem 3.13, A⊕B is a quadrature domain for 1A+1B, and so is the
Diaconis-Fulton smash sum of A and B. Quadrature domains are essentially
unique by Theorem 2.1, so the two sets are essentially equal, and they are
both bulky, so they are really equal by Lemma 1.4.

Corollary 3.15. If a sum of open sets ⊕ satisfies the six requirements in the
essential sense, then for any bounded open sets A,B, the sum of A and B is
essentially equal to the Diaconis-Fulton smash sum of A and B.

Proof. By Lemma 1.6, the bulked sum (A,B) 7→B(A⊕B) satisfies the six
requirements in the strong sense, plus bulkiness. Therefore, by the theorem,
the bulked sum is the Diaconis-Fulton smash sum, and A⊕B is essentially
equal to B(A⊕B). �

3.8.2. Some open questions. Are there sums that satisfy the six require-
ments in the strong sense, but don’t satisfy the requirements of bulkiness?
In particular, is there a sum of open sets with A⊕B = A∪B when A,B are
disjoint? It would have to be essentially equal to smash sum, but it’s not
impossible that sets of measure zero could be left out according to some
clever scheme so that the requirements are still satisfied.

Let f (r,s) = (rd + sd)1/d . We delete the conservation of mass require-
ment, and instead add:

• Continuity. If λ (An ∆ A)→ 0 and λ (Bn ∆ B)→ 0, then the measure
of the differences (An⊕Bn)∆ (A⊕B) goes to zero.
• Addition of concentric balls. If r,s ≥ 0, then the sum Br ⊕Bs is

B f (r,s).
It’s not hard to show that these are consequences of the six requirements,

so this new set is weaker. Is there still only one sum satisfying them?

We can also change the function f . For example, if we set f (r,s) =
max{r,s}, then the union sum A,B 7→A∪B satisfies the above requirements.
Are there any other functions f for which a sum exists?

Could one develop a similar uniqueness result for the sum on a general
Riemannian manifold, as it appears in [4]? Full translation invariance would
be impossible unless the manifold had constant curvature, but one could ask
for the sum to be approximately symmetric for small sets.
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