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1. Introduction

This note is a collection of facts involved in the evaluation of the integral

(1) I3 =
1
π3

∫ π

0

∫ π

0

∫ π

0

1
3− (cos θ1 + cos θ2 + cos θ3)

dθ1 dθ2 dθ3

first obtained in (Watson 1939). It is the most difficult of the three integrals
considered in that paper.

It will be used to find the probability that a random walk in three dimensions ever
returns to the origin. Watson’s motives for evaluating I3 are somewhat different
from ours. In his introduction, he says

The desirability of investigating the triple integrals (...) has arisen
as a consequence of their having appeared in a recent paper in fer-
romagnetic anisotropy by F. van Peype, a pupil of H. A. Kramers.
The problem of evaluating them was proposed by Kramers to R.
H. Fowler who communicated it to G. H. Hardy. The problem then
became common knowledge first in Cambridge and subsequently
in Oxford, whence it made the journey to Birmingham without
difficulty.

There is an expression in closed form for I3, but to understand where it comes
from we will need to enter a dark thicket: the theory of elliptic integrals. This
theory should really be approached through theta functions. We do not intend to
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use this difficult and forbidding material. (We do not necessarily even understand
it.) Instead, we use relatively elementary ideas from hypergeometric functions.

The argument Watson used has been left intact in section 3. It has been copied
more or less verbatim from the paper mentioned above, although some errors have
probably been introduced. Like most papers, though, Watson’s paper is not self-
contained and uses a variety of results with which the reader may not be familiar.
So these results have been proved in sections 4 through 7.

Section 4 is an introduction to hypergeometric functions, and it proves some
fundamental identities. Section 5 proves some properties of the elliptic integral of
the first kind K; for example, a series for K(

√
1− x2) around x = 0 is worked out.

Section 6 defines one of Appell’s functions, F4, and it derives an identity between F4

and a product of two hypergeometric functions. Section 7 proves transformation
formulae for the elliptic integral of the first kind, and it finds the value of two
singular moduli, k6 and k2/3.

Note

The paper by W. F. Van Peype was published in Physica in 1938. See the
bibliography. The paper is in German, which I can’t read, and for that matter is
about ferromagnetic crystals, which I don’t understand.

However, as far as I could tell, although I3 does arise, more importance seems
to be attached to the integrals

1
π3

∫ π

0

∫ π

0

∫ π

0

cos θ3

3− cos θ1 − cos θ2 − cos θ3
dθ1 dθ2 dθ3 and

1
π3

∫ π

0

∫ π

0

∫ π

0

cos θ2 cos θ3

3− cos θ1 − cos θ2 − cos θ3
dθ1 dθ2 dθ3,

that is, other Fourier coefficients of the integrand. It is easy to see that the first
integral is I3 − 1/3.

I’m not sure when closed forms for these coefficients were obtained, although
according to (Joyce and Zucker) there are some.
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2. What good is I3?

The integral

3I3 =
∫ π

0

∫ π

0

∫ π

0

1
1− 1

3 (cos θ1 + cos θ2 + cos θ3)
dθ1 dθ2 dθ3

gives the average number of returns to the origin for the symmetric random walk
in three dimensions.

Let F be the generating function for one step of a three-dimensional random
walk on the simple cubic lattice, Z3.

F (x, y, z) =
1
6
(x + x−1 + y + y−1 + z + z−1).

Each possible step has probability 1
6 . Since the steps are independent, the dis-

tribution after two steps is F 2. In general, after the walk has taken m steps, the
distribution is Fm. The coefficient xiyjzk of F (x, y, z)m is the probability that the
walk has reached (i, j, k) at the time m.

Let um be the probability that the random walk returns to the origin at m.
Substitute x = eiθ1 , y = eiθ2 , z = eiθ3 . By orthogonality,

um = constant term of F (x, y, z)m

=
1

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

F
(
eiθ1 , eiθ2 , eiθ3

)m
dθ1 dθ2 dθ3.

The reader will notice that, in these variables,

F =
1
3
(cos θ1 + cos θ2 + cos θ3).

The expected number of returns to the origin (including the one at time 0), is the
sum of all probabilities um. For the proof, see chapter 13 of (Feller).Alternatively,
one can reason as follows. If Im is the function which is 1 if there’s a return at time
m, and 0 otherwise, then by monotone convergence,

E[# returns] = E
[ ∞∑

m=0

Im

]
=

∞∑
m=0

E[Im] =
∞∑

m=0

um.

Since finite sums commute with the integral sign,
∞∑

m=0

um = lim
M→∞

1
(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

1− FM+1

1− F
dθ1 dθ2 dθ3.

The absolute value of F is less than 1, except in two places, θ = (0, 0, 0) and
θ = (π, π, π). Therefore, the integrands are all dominated by |2/(1 − F )| and
converge pointwise almost everywhere. Since cos θ1 + cos θ2 + cos θ3 = 3 − 1

2 (θ2
1 +

θ2
2 + θ2

3) + O(||θ||3),
2

1− F
=

12
θ2
1 + θ2

2 + θ2
3

+ O(||θ||−1).

But in three dimensions, the integral of r−2 in a bounded region is finite. The
integral of the dominating function near zero is less than infinity.∫

||θ||≤ε

2
1− F

dθ1 dθ2 dθ3 ≈
∫

||θ||≤ε

12
θ2
1 + θ2

2 + θ2
3

dθ1 dθ2 dθ3 =
∫

r≤ε

48π dr < ∞.
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But 2/(1− F ) is bounded outside the region ||θ|| < ε. So
∫ ∣∣∣∣

2
1− F

∣∣∣∣ dθ1 dθ2 dθ3 < ∞

since F is not equal to 1 anywhere else.
The dominated convergence theorem applies, and we conclude that

∞∑
m=0

um =
1

(2π)3

∫
1

1− F
dθ1 dθ2 dθ3 = 3I3.

We can obtain the probability of return to the origin as follows. Let this prob-
ability be f . The “return” at time zero has probability 1. A second return occurs
with probability f , a third occurs with probability f2, and so on. The average
number of returns is

E[# returns] =
∞∑

m=1

m P[the walk makes exactly m returns]

=
∞∑

m=1

P[the walk makes m returns or more].

This is
U = 1 + f + f2 + · · · = 1

1− f
.

Consequently, f = (U − 1)/U = (3I3 − 1)/3I3.
We now attempt to evaluate I3 in closed form.
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3. Watson’s argument

I3 =
1
π3

∫ π

0

∫ π

0

∫ π

0

1
3− (cos θ1 + cos θ2 + cos θ3)

dθ1 dθ2 dθ3.

We begin by setting x = tan θ1/2, y = tan θ2/2, z = tan θ3/2. This coordinate
substitution makes the integrand rational. If x = tan θ/2, then

dθ

dx
=

2
1 + x2

cos θ =
1− x2

1 + x2
sin θ =

2x

1 + x2

For example,

3− (cos θ1 + cos θ2 + cos θ3) =

2x2 + 2y2 + 2z2 + 4x2y2 + 4x2z2 + 4y2z2 + 6x2y2z2

(1 + x2)(1 + y2)(1 + z2)
.

We then convert to polar coordinates r, θ, ϕ,

x = r sin θ cosϕ y = r sin θ sin ϕ z = r cos θ J = r2 sin θ.

There will be a symmetry around ψ = π/2, and
∫ π/2

0

(· · · )dϕ =
1
2

∫ π

0

(· · · )dψ =
∫ π/2

0

(· · · )dψ.

These operations give us

(1) =
4
π3

∞∫

0

∞∫

0

∞∫

0

1
(x2 + y2 + z2) + 2(x2y2 + x2z2 + y2z2) + 3x2y2z2

dx dy dz

=
4
π3

π/2∫

0

π/2∫

0

∞∫

0

sin θ

1 + 2r2 sin2 θ(cos2 θ + sin2 θ sin2 ϕ cos2 ϕ) +
+ 3r4 sin4 θ cos2 θ sin2 ϕ cos2 ϕ

dr dθ dϕ

=
4
π3

π/2∫

0

π/2∫

0

∞∫

0

sin θ

1 + 2r2 sin2 θ(cos2 θ + 1
4 sin2 θ sin2 ψ) +
+ 3

4r4 sin4 θ cos2 θ sin2 ψ

dr dθ dψ.

Now replace r by a new variable t defined by the equation r sin θ = t
√

2, and
integrate over θ.

(1) =
4
√

2
π3

π/2∫

0

π/2∫

0

∞∫

0

1
1 + t2(4 cos2 θ + sin2 θ sin2 ψ) + 3t4 cos2 θ sin2 ψ

dt dθ dψ

We know that, under the substitution tan θ = x,
∫ π/2

0

1
a + b cos2 θ

dθ =
∫ ∞

0

1
a(1 + x2) + b

dx =
π/2√

a + b
√

a
.

So

(1) =
2
√

2
π2

π/2∫

0

∞∫

0

1√
1 + 4t2 + 3t4 sin2 ψ

√
1 + t2 sin2 ψ

dtdψ
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Next substitute tan ψ = ξ, and then write ξ = ζ/(1 + t2) and integrate with
respect to t.

(1) =
2
√

2
π2

∞∫

0

∞∫

0

1√
1 + ξ2 + 4t2 + 4t2ξ2 + 3t4ξ2

√
1 + ξ2 + t2ξ2

dt dξ

=
2
√

2
π2

∞∫

0

∞∫

0

1√
1 + t2

√
1 + 4t2 + ζ2 + 3t2ζ2

√
1 + ζ2

dt dζ

=
2
√

2
π2

∫ ∞

0

K ′
(

1 + ζ2

4 + 3ζ2

)
1√

4 + 3ζ2
√

1 + ζ2
dζ

=
2
√

2
π2

∫ π/2

0

K ′
(

1√
4− sin2 χ

)
1√

4− sin2 χ
dχ

where ζ = tan χ. See section 5.2 for the definition of K ′.
In section 5.4 we prove that

K ′(k) = − 1
2π

[
d

dz

∞∑
m=0

Γ2( 1
2 + m + z)

Γ(1 + m + 2z)m!
k2m+2z

]

z=0

.

It follows that

(1) = −
√

2
π3

∫ π/2

0

[
d

dz

∞∑
m=0

Γ2( 1
2 + m + z)

Γ(1 + m + 2z)m!
1

(4− sin2 χ)m+z+ 1
2

]

z=0

dχ

= −
√

2
π3

[
d

dz

∞∑
m=0

Γ2( 1
2 + m + z)

Γ(1 + m + 2z)m!

∫ π/2

0

1
(4− sin2 χ)m+z+ 1

2
dχ

]

z=0

We have to move the derivative and the sum through the integral. The justifi-
cation is left to the reader. Note that 4− sin2 χ only varies between 4 and 3, so the
integrand can be written as f(0, χ) + zfz(0, χ) + o(z), where o(z) is uniform in the
other variable χ.

Consider (4 − sin2 χ) = 1
2 (7 + cos 2χ). Choose c to be a root of c2 + 1 = 14c.

The possible values for c are 7− 4
√

3 and 7 + 4
√

3.
Let c = 7− 4

√
3 = (2−√3)2. To four decimal places, c ≈ 0.0718. In fact c is so

small that √
4c +

√
c2 < 1.

Now replace (4− sin2 χ) with

1
2
(7 + cos 2χ) =

1
4c

(1 + c2 + 2c cos 2χ) =
1
4c

(1 + ce2χi)(1 + ce−2χi).

The integrand becomes

1
(4− sin2 χ)m+z+ 1

2
=

(4c)m+z+ 1
2

((1 + ce2χi)(1 + ce−2χi))m+z+ 1
2

Expand each factor in the denominator in a series of ascending powers of c,
multiply the two series together, and integrate.

Only the terms with no factor e2mχi will contribute; the others will vanish when
the integral is performed (after terms e+2mχi are paired with e−2mχi).
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So,

(2)
∫ π/2

0

dχ

(4− sin2 χ)m+z+ 1
2

=
π

2
(4c)m+z+ 1

2

∞∑

j=0

(
(m + z + 1

2 )j

j!

)2

c2j

We are using the Pochhammer symbol (x)j = (x)(x + 1) · · · (x + j − 1).
Substitute this into the above expression.

π

2

∞∑
m=0

Γ2( 1
2 + m + z)

Γ(1 + m + 2z)m!
(4c)m+z+ 1

2

∞∑

j=0

(
(m + z + 1

2 )j

j!

)2

c2j

=
π

2
Γ2( 1

2 + z)
Γ(1 + 2z)

(4c)z+ 1
2

∞∑
m=0

∞∑

j=0

(z + 1
2 )m+j(z + 1

2 )m+j

(1 + 2z)m(1)j
(4c)m(c2)j

=
π

2
Γ2( 1

2 + z)
Γ(1 + 2z)

(4c)z+ 1
2 F4(

1
2

+ z,
1
2

+ z; 1 + 2z, 1; 4c, c2).

This function F4 is one of several defined by Appell. They are generalizations of
the hypergeometric function to the two-variable case. See (Slater), Chapter 8.

F4(a, b; c, c′; x, y) =
∞∑

m=0

∞∑

j=0

(a)m+j(b)m+j

(c)m(c′)j
xmyj

This function converges at least when |x|1/2 + |y|1/2 < 1.
We have the following relation. If a + b + 1 is equal to c + c′, and u and v are

sufficiently small, then

F4(a, b; c, c′;u(1− v), v(1− u)) = 2F1(a, b; c; u)2F1(a, b; c′, v).

This is proved in section 6, using certain well-known identities about hypergeo-
metric functions, which are themselves proved in section 4. The above formula is
true at least when |u| and |v| are less than 1

2 , and the arguments of F4 are in the
domain

|u(1− v)|1/2 + |v(1− u)|1/2 < 1.

The function
F4

(
1
2 + z, 1

2 + z; 1 + 2z, 1; 4c, c2
)
.

does meet the requirement that a + b + 1 = c + c′.
We indicated earlier that

√
4c +

√
c2 < 1, so we just need values of u and v such

that
u(1− v) = 4c v(1− u) = c2.

These conditions can be satisfied by the following u and v.

1− u = (2−
√

3)2(
√

3 +
√

2)2 ≈ 0.7107.

v = (2−
√

3)2(
√

3−
√

2)2 ≈ 0.00725.
We readily check that v(1− u) = c2 and u− v = 4c− c2 = 1− 10c.
Hence

F4

(
1
2 + z, 1

2 + z; 1 + 2z, 1; 4c, c2
)

= 2F1

( 1
2 + z, 1

2 + z

1 + 2z

∣∣∣∣ u

)
2F1

( 1
2 + z, 1

2 + z

1

∣∣∣∣ v

)
.
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On page 3 and 4, we expressed (1) in the following peculiar terms.

−
√

2
π3

[
d

dz

∞∑
m=0

Γ2(1
2 + m + z)

Γ(1 + m + 2z)m!

∫ π/2

0

1
(4− sin2 χ)m+z+ 1

2
dχ

]

z=0

.

We substituted the following expansion, which we obtained from the factorization
of (4− sin2 χ) into (4c)−1(1 + ce2χi)(1 + ce−2χi), into the expression above.

(2)
∫ π/2

0

dχ

(4− sin2 χ)m+z+ 1
2

=
π

2
(4c)m+z+ 1

2

∞∑

j=0

(
(m + z + 1

2 )j

j!

)2

c2j .

This gave

(1) = − 1
(
√

2)π2

[
d

dz

Γ2( 1
2 + z)

Γ(1 + 2z)
(4c)z+ 1

2 F4

(
1
2

+ z,
1
2

+ z; 1 + 2z, 1; 4c, c2

)]

z=0

= − 1
(
√

2)π2

[
d

dz

Γ2( 1
2 + z)

Γ(1 + 2z)
(4c)z+ 1

2 2F1

( 1
2 + z, 1

2 + z

1 + 2z

∣∣∣∣ u

)
2F1

( 1
2 + z, 1

2 + z

1

∣∣∣∣ v

)]

z=0

Kummer’s transformation, which was proved in section 4, gives us the following
identity.

2F1

( 1
2 + z, 1

2 + z

1

∣∣∣∣ v

)
= (1− v)−z− 1

2 2F1

( 1
2 + z, 1

2 − z

1

∣∣∣∣
v

v − 1

)

for v < 1/2. The hypergeometric function on the right-hand side is even, so its
derivative at z = 0 vanishes.

We can reverse this identity after the 2F1 is outside the derivative.

2F1

( 1
2 , 1

2

1

∣∣∣∣
v

v − 1

)
= (1− v)

1
2 2F1

( 1
2 , 1

2

1

∣∣∣∣ v

)
= (1− v)

1
2 K(

√
v).

Therefore, since 4c = u(1− v),

(1) = − (1− v)
1
2
√

2
π3

K(
√

v)

[
d

dz

Γ2( 1
2 + z)

Γ(1 + 2z)
uz+ 1

2 2F1

( 1
2 + z, 1

2 + z

1 + 2z

∣∣∣∣ u

)]

z=0

=
(4c)

1
2 2
√

2
π2

K(
√

v)K ′(
√

u).

We might be satisfied with this. We have represented the integral I3 in terms of
two elliptic functions.

I3 =
4
√

2(2−√3)
π2

K
(
(2−

√
3)(
√

3−
√

2)
)
K

(
(2−

√
3)(
√

3 +
√

2)
)
.

3I3 = 1.516386059151978018156012159+.

But we can write I3 in terms of K(
√

v)2, although this makes the algebraic part
a bit more complicated. And since we are able to, we might as well do it.

Now the really hard part. Let τ(k) be defined as in section 7,

τ(k) =
K ′

K
(k).

We prove in section 7 that, when
√

1− u = (2−√3)(
√

3 +
√

2),

τ(
√

u) =
1

τ(
√

1− u)
=

√
3
2
.
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We also showed that τ(
√

v) =
√

6. Therefore,

τ(
√

v) = 2τ(
√

u).

But if τ(a) = τ(b), then a = b (when 0 < a, b < 1). The lower-right formula
from section 7, together with the equation on the bottom of the first page, gives

K(
√

u) = (1 +
√

v)K(
√

v).

Since τ(
√

1− u) =
√

2/3,

K(
√

1− u) =

√
3
2
K(
√

u).

So,

K(
√

1− u) =

√
3
2
K(
√

u) =

√
3
2
(1 +

√
v)K(

√
v).

Therefore,

I3 =
(4c)

1
2 2(1 +

√
v)
√

3
π2

K
(
(2−

√
3)(
√

3−
√

2)
)2

= (18 + 12
√

2− 10
√

3− 7
√

6)
(

2K(
√

v)
π

)2

.

This is our final expression for I3. It is possible to write K(
√

v) as a product of
gamma functions, but this was not proved until 1967. Watson himself ended the
paper here, remarking only that the formula

2K(
√

v)
π

= ϑ3(e−π
√

6)2 = (1 + 2e−π
√

6 + 2e−4π
√

6 + 2e−9π
√

6 + · · · )2

was a convenient way to start computing I3.
The formula in terms of gamma functions can be written very nicely thanks to

(Borwein and Zucker),

3I3 =
√

3− 1
32π3

[
Γ
(

1
24

)
Γ
(

11
24

)]2

.

This is difficult to prove, but the paper by Borwein and Zucker is a good place
to start. It all depends on an expression from analytic number theory; see (Selberg
and Chowla).

(I am planning to write a sequel when I find out how this works.)
Also see (Joyce and Zucker), who via a paper by (Iwata)1 were able to find a

closed form for

W2(z) =
1
π3

∫ π

0

1
1− z

3 (cos θ1 + cos θ2 + cos θ3)
dθ1 dθ2 dθ3,

which is the generating function of U(z) =
∑

umzm.

1The Natural Science Report of Ochanomizu University appears to be hard to find, but the
argument is recapitulated in Joyce and Zucker’s paper.
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4. Hypergeometric functions

Everyone should know a few theorems about hypergeometric functions. We are
going to define the hypergeometric function on three parameters, and then prove
some things about it.

A hypergeometric series is an infinite sequence σ0, σ1, σ2, . . . , σm, . . . such that
the ratio between successive terms, σm+1/σm, is a rational function of m.

Let x be a constant and P (m) and Q(m) be two monic polynomials, chosen so
that

σm+1

σm
= R(m) = x

P (m)
Q(m)

= x
(m + a1) · · · (m + ap)
(m + b1) · · · (m + bq)

.

The letters p and q denote the degrees of the numerator and denominator. We are
generally going to put σ0 = 1.

A hypergeometric function is a power series
∞∑

m=0

amxm = 1 +
P (0)
Q(0)

x

1!
+

P (0)
Q(0)

P (1)
Q(1)

x2

2!
+ · · ·

with hypergeometric coefficients. It is denoted by

pFq

(
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x

)
.

The factorial in the denominator acts like an invisible bq+1 = 1. We can cancel
it out by adding an ap+1 = 1, but why is it there in the first place?

The derivative of a pFq is

d

dx
pFq

(
a1, . . . , ap

b1, . . . , bq

)
=

P (0)
Q(0)

+
P (0)
Q(0)

P (1)
Q(1)

x

1!
+

P (0)
Q(0)

P (1)
Q(1)

P (2)
Q(2)

x2

2!
+ · · ·

=
a1 · · · ap

b1 · · · bq
pFq

(
a1 + 1, . . . , ap + 1
b1 + 1, . . . , bq + 1

)

The factorial eats the inconvenient factor of m+1, which would otherwise increase
the number of parameters. This pleasant expression for the derivative leads natu-
rally to a differential equation.

Of course this is the standard notation and we would have to use it whether it
made sense or not.

The series pFq converges absolutely everywhere when p ≤ q. If p is equal to
q +1, then it converges absolutely when |x| is strictly less than 1, by the ratio test.

This is a very general function, and many other transcendental functions can be
expressed by combining pFq with simpler functions.2

In this note the function 2F1 shows up a lot, and we had better prove some
things about it. We have

2F1

(
a, b

c

∣∣∣∣ x

)
=

∞∑
m=0

(a)m(b)m

(c)m m!
xm

where (a)m = (a)(a + 1) · · · (a + m− 1) is called the Pochhammer symbol.

2Try typing your favourite special function into Maple, and asking it to convert to pFq-s. The
command for this is

convert(〈function〉, hypergeom);
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Theorem. This series solves the hypergeometric differential equation

x(1− x)
d2f

dx2
+ (c− (a + b + 1)x)

df

dx
− abf = 0.

Proof. Let ∂x denote the derivative on x. Let δ denote the operator x∂x, which
acts on power series by sending xα to αxα.

We claim that the function F = 2F1(a, b; c; x) solves
(

x(1− x)∂x∂x + (c− (a + b + 1)x)∂x − ab

)
2F1

(
a, b

c

∣∣∣∣ x

)
= 0

But this is the same as
[
(δ + c)∂x − (δ + a)(δ + b)

]
F = 0

or
(δ + c)∂xF = (δ + a)(δ + b)F.

A series
∑

m σmxm will solve the above equation if

(m + c)(m + 1)σm+1 = (m + a)(m + b)σm

for all integer m, where we will set σm = 0 if m < 0.
By definition, the coefficients of 2F1(a, b; c; x) solve this equation for m ≥ 0.

When m ≤ −2, both σm and σm+1 are zero. When m = −1, the left side of the
equation is zero since m + 1 = 0, and the right side is zero since σ−1 = 0.

In a sense, the presence of the factor m + 1 above allows the series to start at
x0. Could the series also start at x1−c?

Yes; the shifted hypergeometric function
∞∑

m=0

(a + 1− c)m(b + 1− c)m

(2− c)mm!
xm+1−c = x1−c

2F1

(
a + 1− c, b + 1− c

2− c

∣∣∣∣ x

)

is also a solution of the above differential equation, valid on the interval (0, 1).
A second-order linear differential equation has exactly two linearly independent

solutions, and unless c = 1 we now know every solution for the hypergeometric
differential equation. Unfortunately, c = 1 is exactly the case we are interested in;
more about this later.

4.1. Vandermonde’s identity. We can evaluate a 2F1 at x = 1. One way to do
it is by using the integral representation for the 2F1.

2F1

(
a, b

c

∣∣∣∣ x

)
=

Γ(c)
Γ(c− b)Γ(a)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−b dt

This is valid when |x| is less than 1 and Re(c− b) > 0, Re(b) > 0.
However, since we don’t need the full generality, we can prove the following form

of the theorem in an elementary way. The general theorem is

2F1

(
a, b

c

∣∣∣∣ 1
)

=
Γ(c− a− b)Γ(c)
Γ(c− a)Γ(c− b)

.

Theorem. Let n ≥ 0 be an integer.

2F1

(
a,−n

c

∣∣∣∣ 1
)

=
(c− a)n

(c)n
.
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Proof. We start with the identity
n∑

j=0

(
r

n− j

)(
s

j

)
=

(
r + s

n

)
=

(r + s− n + 1)n

n!
.

This can be proven easily from (1 + x)r(1 + x)s = (1 + x)r+s.
The sum on the left is hypergeometric. The ratio between successive terms is

(
r

n− j − 1

)(
s

j + 1

)/(
r

n− j

)(
s

j

)
=

(s− j)(n− j)
(r − n + j + 1)(j + 1)

.

It follows that the sum is
n∑

j=0

(
r

n− j

)(
s

j

)
=

(
r

n

) n∑

j=0

(−n)j(−s)j

j!(r − n + 1)j

=
(r − n + 1)n

n! 2F1

( −n,−s

r − n + 1

∣∣∣∣ 1
)

Now set c = r − n + 1 and a = −s and we are done with the proof.

2F1

( −n,−s

r − n + 1

∣∣∣∣ 1
)

=
(r + s− n + 1)n

(r − n + 1)n
or 2F1

(−n, a

c

∣∣∣∣ 1
)

=
(c− a)n

(c)n
.

¤

4.2. Kummer’s transformation.
Theorem.

2F1

(
a, b

c

∣∣∣∣ x

)
= (1− x)−a

2F1

(
a, c− b

c

∣∣∣∣
x

x− 1

)

Proof. Take the coefficient of xm from the right-hand side. It is

[xm]
∞∑

j=0

(a)j (c− b)j

(c)j j!
xj

(1− x)j+a
(−1)j =

m∑

j=0

(−1)j (a)j (c− b)j (a + j)m−j

(c)j j! (m− j)!

=
(a)m

m! 2F1

(
c− b,−m

c

∣∣∣∣ 1
)

=
(a)m (b)m

(c)m m!

Hence the two sides are equal where they converge. ¤

4.3. The gamma function. Let Γ(x) be the gamma function,

Γ(x) = lim
m→∞

m! mx−1

(x)m
.

Here are a few of its familiar properties.

Γ(x) =
∫ ∞

0

tx−1e−t dt if x > 0. xΓ(x) = Γ(x + 1).

Γ(x + m)
Γ(x)

= (x)(x + 1) · · · (x + m− 1) = (x)m.

∫ 1

0

ta−1(1− t)b−1 dt =
Γ(a)Γ(b)
Γ(a + b)

.
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Setting t = sin2 θ,

2
∫ π/2

0

sin(θ)2a−1 cos(θ)2b−1 dθ =
Γ(a)Γ(b)
Γ(a + b)

.

The identity 2 cos θ sin θ = sin 2θ gives the multiplication formula

Γ(2x)Γ(1/2) = 22x−1Γ(x)Γ(x + 1/2).

The digamma function may be less familiar.

ψ(x) =
Γ′(x)
Γ(x)

=
d

dx
log Γ(x) = lim

m→∞

(
log m− 1

x
− 1

x + 1
− · · · − 1

x + m− 1

)
.

The limit is a uniform limit of analytic functions, so the derivative and limit can
be interchanged. The reader who has heard of Euler’s constant γ will notice that
ψ(1) is equal to −γ.

The letter digamma is an obsolete Greek letter, which looked something like the
Roman letter ‘f ’. We use the letter ψ instead.

We will later want to know the value of ψ(1)−ψ( 1
2 ). This can be worked out as

follows.

ψ( 1
2 ) = lim

m→∞

(
log m− 2− 2

3
− 2

5
− 2

7
− · · · − 2

2m− 1

)

= lim
m→∞

(
log(2m)− 1− 1

2
− 1

3
− · · · − 1

2m

)
− log 2

− lim
m→∞

(
1− 1

2
+

1
3
− 1

4
+ · · · − 1

2m

)

= ψ(1)− log 4.

In fact, every value ψ(p
q ) with p and q rational can be expressed in terms of γ

and logarithms.
One other useful fact is that, since Γ(x + m) = (x)mΓ(x),

ψ(x + m) =
1
x

+
1

x + 1
+ · · ·+ 1

x + m− 1
+ ψ(x).

Hence,
∂

∂c
(c)m = (ψ(c + m)− ψ(c))(c)m.

This shows us how to differentiate a pFq on a parameter. For example,

∂

∂c
2F1

(
a, b

c

∣∣∣∣ x

)
=

∞∑
m=0

(ψ(c)− ψ(c + m))
(a)m (b)m

(c)m

xm

m!
.

Recall that the differential equation

(δ + c)∂f = (δ + a)(δ + b)f

is solved by the following two functions in 0 < x < 1.

S1 = 2F1

(
a, b

c

∣∣∣∣ x

)
S2 = x1−c

2F1

(
a + 1− c, b + 1− c

2− c

∣∣∣∣ x

)
.

Consider fc(x) = (S2 − S1)/(c− 1). It is clear that

(δ + c)∂fc − (δ + a)(δ + b)fc = 0.
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We may take the limit as c approaches 1. We start by writing out the series,

fc(x) =
∞∑

m=0

(
(a)m (b)m

(c)m
− x1−c (a + 1− c)m (b + 1− c)m

(2− c)m

)
xm.

Since ψ(c+m) increases fairly slowly, the expression above is uniformly convergent
for x in a closed set inside (0, 1) and c fairly close to 1. Therefore, the derivative
goes through the sum.

f1(x) =
∂

∂c
fc(x)

]
c=1

=
∞∑

m=0

∂

∂c

(
· · ·

)]

c=1

xm,

where (· · · ) is the expression in parentheses above. Therefore, the coefficients of f1

solve the same recurrence as the coefficients of fc when c 6= 1.

(δ + 1)∂f1 − (δ + a)(δ + b)f1 = 0.

If f1 isn’t proportional to S1, then it’s a new solution. We can use any pair of
solutions S1, S2, not just the two above, provided that they are equal at c = 1.

This line of thought is continued in Section 5.3.
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5. Formulae for elliptic integrals

The elliptic integral of the first kind, K, is

K(k) =
∫ 1

0

1√
1− k2x2

1√
1− x2

dx.

Set x = sin θ. The new value of K(k) is

K(k) =
∫ π/2

0

1√
1− k2(sin θ)2

dx.

5.1. K(
√

k) is hypergeometric.
Expand the first term by the binomial theorem for

K(k) =
∞∑

j=0

( 1
2 )j

j!
k2j

∫ 1

0

x2j

√
1− x2

dx

=
1
2

∞∑

j=0

( 1
2 )j

j!
k2j Γ(j + 1/2)Γ(1/2)

Γ(j + 1)

=
π

2 2F1

( 1
2 , 1

2

1

∣∣∣∣ k2

)

The expression on the second line was obtained by making the change of variables
x → √

x; this produced a beta integral.
In the third line, two identities were used: Γ(1/2)2 is π, and

Γ
(

j +
1
2

)
=

(
1
2

)(
1
2

+ 1
)(

1
2

+ 2
)
· · ·

(
1
2

+ j − 1
)

Γ
(

1
2

)
.

¤

5.2. The conjugate, K ′. In section 3 we want to evaluate
∫ ∞

0

1√
1 + x2

√
a2 + x2

dx.

Set x = tan θ. The integral above becomes
∫ ∞

0

1

sec2 θ
√

a2 cos2 θ + sin2 θ
dx =

∫ π/2

0

1√
a2 cos2 θ + sin2 θ

dθ.

If 0 ≤ a2 ≤ 1, then the latter integral is clearly
∫ π/2

0

1√
1 + (a2 − 1) cos2 θ

dθ =
∫ π/2

0

1√
1 + (a2 − 1) sin2 θ

dθ.

which is K(
√

1− a2).
We give this function the name K ′(k) = K(

√
1− k2). We will find a power series

for it.
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5.3. K ′ near zero.
The function K ′ = K(

√
1− k2) can be evaluated near zero.

K ′ ≈ ln(4/k) + o(1).

Set k′ =
√

1− k2. Then

K ′(k) =
∫ π/2

0

1√
1− k′2 sin2 θ

dθ.

We can separate the integral into two pieces.

K ′(k) =
∫ π/2

0

k′ sin θ√
1− k′2 sin2 θ

dθ +
∫ π/2

0

√
1− k′ sin θ√
1 + k′ sin θ

dθ

Set cos θ = u to see that∫ π/2

0

k′ sin θ√
1− k′2 sin2 θ

dθ =
∫ 1

0

k′√
k2 + k′2u2

du

= arcsinh
(

k′

k

)
= ln

k′ + 1
k

.

(The last equality comes from the fact that sinh a = x is quadratic in ea. It is easily
shown that ea = x +

√
x2 + 1, hence a = arcsinh x = ln(x +

√
x2 + 1).)

The second integral at k = 0 is
∫ π/2

0

1− sin θ

cos θ
dθ.

This is ln 1 + sin θ
]π/2

θ=0
= ln 2.

Consequently,

K ′(k) ≈ ln
k′ + 1

k
+ ln 2 ≈ ln

4
k

.

5.4. The series for K ′.
Define

K̃(x) = K(
√

x) =
π

2 2F1

( 1
2 , 1

2

1

∣∣∣∣ x

)
.

It is proved in Appendix 4 that(
(δ + 1)∂ − (δ + 1/2)(δ + 1/2)

)
K̃(x) = 0.

(x− x2)
d2K̃(x)

dx2
+ (1− 2x)

dK̃(x)
dx

− 1
4
K̃(x) = 0

Set x → 1− x to see that K̃(1− x) = K ′(
√

x) is also a solution.
Earlier two solutions of a hypergeometric differential equation were written out

explicitly as

x1−c
2F1

(
a + 1− c, b + 1− c

2− c

∣∣∣∣ x

)
2F1

(
a, b

c

∣∣∣∣ x

)
.

Unfortunately, when c = 1 these are the same solution.
We can use a clever and generally applicable trick. We have two solutions S1

and S2 which are distinct everywhere except at c = c0. The idea is to differentiate
on the parameter c. It works out as follows. Let z be 1− c.
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S1 = xz Γ(1/2 + z)2

Γ(1 + z) 2F1

( 1
2 + z, 1

2 + z

1 + z

∣∣∣∣ x

)
S2 =

Γ(1/2)2

Γ(1− z) 2F1

( 1
2 , 1

2

1− z

∣∣∣∣ x

)
.

S1 =
∞∑

m=0

Γ(1/2 + m + z)Γ(1/2 + m + z)
Γ(1 + m + z)Γ(1 + m)

xm+z

S2 =
∞∑

m=0

Γ(1/2 + m)Γ(1/2 + m)
Γ(1 + m)Γ(1 + m− z)

xm.

1
2π

∂

∂z
(S2 − S1) =

1
2

∞∑
m=0

(
2ψ(1)− 2ψ(1

2 )− ln x

)
(1
2 )m( 1

2 )m

(1)mm!
xm

We have remembered again that Γ( 1
2 )2 = π.

In section 4 it was proved that

ψ(1)− ψ( 1
2 ) = ln 4.

So,

S(x) =
1
2π

∂

∂z
(S2 − S1) = ln(4)− ln(x)/2 + o(1)

We have already proved that

K(
√

1− k2) = ln(4)− ln(k) + o(1).

Then K̃(1− x) = K(
√

1− x) = ln(4)− ln(x)/2 must be equal to S(x).
This gives us the desired formula,

K ′(k) =
1
2

∞∑
m=0

(2ψ(1)− 2ψ( 1
2 )− 2 ln k)

( 1
2 )m( 1

2 )m

(1)mm!
k2m

= − 1
2π

∂

∂z

[ ∞∑
m=0

Γ( 1
2 + m + z)Γ( 1

2 + m + z)
Γ(1 + m + 2z)Γ(1 + m)

k2m+2z

]
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6. Appell’s F4.

Appell generalized the hypergeometric function to two variables by considering
the product of two 2F1s on different variables,

∞∑
m=0

∞∑
n=0

(a)m(a′)n(b)m(b′)n

(c)m(c′)nm!n!
xmyn,

and combining pairs of parameters (a)m(a′)n into (a)m+n, for example. We are
concerned with the function F4, in which the two upper pairs are combined.

F4(a, b; c, c′; x, y) =
∞∑

m=0

∞∑
n=0

(a)m+n(b)m+n

(c)m(c′)n m!n!
xmyn.

Suppose that the parameters are related by a + b + 1 = c + c′. We will prove a
nice identity. The following argument is taken from (Slater 1964).

Let Umn denote the coefficient of xmyn in the function

Φ(x, y) = (1−x)−a(1−y)−bF4

(
a, b; c, a+b−c+1,

x

(1− x)(y − 1)
,

y

(1− x)(y − 1)

)
.

We compute

[xmyn]xrys(1− x)−a−r−s(1− y)−b−r−s = [xm−ryn−s](1− x)−a−r−s(1− y)−b−r−s

= (−1)r+s (a + r + s)m−r(b + r + s)m−s

(m− r)!(n− s)!

Umn =
m∑

r=0

n∑
s=0

(−1)r+s (a)r+s (b)r+s (a + r + s)m−r (b + r + s)n−s

r! s! (c)r (1 + a + b− c)s (m− r)! (n− s)!

=
1

m! n!

m∑
r=0

n∑
s=0

(a)m+s (−n)s (b)n+r (−m)r

r! (1 + a + b− c)s s! (c)r

=
(a)m (b)n

m!n! 2F1

(
a + m,−n

1 + a + b− c

∣∣∣∣ 1
)

2F1

(
b + n,−m

c

∣∣∣∣ 1
)

(A.1)

We proved Vandermonde’s theorem for the case where one of the upper param-
eters is a negative integer.

2F1

(
a, b

c

∣∣∣∣ 1
)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1

(
a,−n

c

∣∣∣∣ 1
)

=
(c− a)n

(c)n
.

Therefore,

(A.1) =
(a)m (b)n (1 + b− c−m)n (c− b− n)m

m! n! (1 + a + b− c)n (c)m

=
(a)m (b)n (1 + b− c)n (c− b)m

m!n! (c)m (1 + a + b− c)m
,

where in the last line we have put (c− b− n)m = (c− b)m−n(−1)n(1− b + c)n and
used the identity (1 + b− c−m)n = (−1)n(c− b + m− n)n.

(In order for (c−b)m−n to make sense for all m, n, we very briefly have to require
that c− b is not an integer and then extend again by continuity.)

We have just shown that

Umn =
(a)m (b)n (1 + b− c)n (c− b)m

m! n! (c)m (1 + a + b− c)n
.
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Then

Φ(x, y) =
∞∑

m=0

∞∑
n=0

(a)m (c− b)m

m!(c)m

(b)n(1 + b− c)n

n!(1 + a + b− c)n
xmyn.

= 2F1(a, c− b; c;x) 2F1(b, 1 + b− c; 1 + a + b− c; y)

Therefore, these two power series are identical. Apply Kummer’s transform to
both these 2F1-s. The terms (1− x)−a and (1− y)−b are absorbed and

F4

(
a, b; c, a + b− c + 1;

x

(1− x)(y − 1)
,

y

(1− x)(y − 1)

)

= 2F1

(
a, b

c

∣∣∣∣
x

x− 1

)
2F1

(
a, b

1 + a + b− c

∣∣∣∣
y

y − 1

)

Note that both sides of this equation are absolutely convergent even when ex-
panded as power series of x and y, if x and y are small enough. Sufficient conditions
are that |x| < 1

2 , |y| < 1
2 , and the two nonparameter arguments of the F4 are in the

domain of convergence. When this is true, the two sides are really identical, not
just formally identical.

(In our case all the parameters are positive, which makes this obvious. In general,
a different F4 will majorize this series.)

This identity can also be written as follows.

F4

(
a, b; c, a + b− c + 1; u(1− v), v(1− u)

)

= 2F1

(
a, b

c

∣∣∣∣ u

)
2F1

(
a, b

1 + a + b− c

∣∣∣∣ v

)

where u = x/(x− 1), v = y/(y − 1).
The left-hand side converges when

√
|u(1− v)|+

√
|v(1− u)| < 1 (at least); we

will now prove this.
We are going to claim that the series F4(a, b; c, c′; x, y) converges when the sum√

x +
√

y < 1. Clearly,

Γ(x) = lim
m→∞

m! mx−1

(x)m
implies

(a)m

m!
∼ 1

Γ(a)
ma−1

We can get away with ignoring small m, n because sums for particular values of m
and n converge like a 2F1. For large m,n,

(a)m+n(b)m+n

(c)m(c′)nm!n!
∼ Γ(c)Γ(c′)

Γ(a)Γ(b)
(m + n)a+bm−cn−d

(
m + n

m,n

)2

However,
∑

m+n constant

(
m + n

m

)2

|x|m|y|n ≤ (
√

x +
√

y)2(m+n)

because (
2(m + n)
2m, 2n

)
≥

(
m + n

m, n

)2

⇔
(

2(m + n)
m + n

)
≥

(
2m

m

)(
2n

n

)

which can be proved by induction on n. Therefore, the F4 converges better than∑

s≥0

s|a|+|b|+|c|+|d|(
√

x +
√

y)2s < ∞.
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7. Modular equations

This section is taken from (Borwein 1987), and the subsections 7.1 and 7.2 follow
very closely Section 4.1 in that book. The notation is similar but not identical.

This is a short introduction to the classical theory of modular equations.
We start with the following integral for K ′. It was proved in section 5.2.

K ′(k) = K(
√

1− k2) =
∫ ∞

0

1√
1 + x2

√
k2 + x2

dx,

Write this as an integral over u, where u = 1
2 (x − k/x). This is easier than it

looks, since
(1 + x2)(k2 + x2) = 4x2

(
u2 + 1

4 (1 + k)2
)
.

We solve the quadratic equation and get x = u+
√

u2 + k. From this expression
it is clear that x is monotonically increasing in u (and vice versa).

The derivative is
dx

du
=

x√
u2 + k

.

So, ∫ ∞

0

1√
1 + x2

√
k2 + x2

dx =
∫ ∞

−∞

1
2
√

u2 + 1
4 (1 + k)2

√
u2 + k

du.

The integral is symmetric around zero, so the integral over [0,∞] is just half the
integral over [−∞,∞]. This absorbs the factor of 1

2 .

Substitute u = 1
2 (1 + k)z.

∫ ∞

0

1√
u2 + 1

4 (1 + k)2
√

u2 + k
du =

2
1 + k

∫ ∞

0

1√
z2 + 1

√
z2 + l2

dz

We have got an integral of the same form that we started with, but now the
parameter is l = 2

√
k/(1 + k). By the arithmetic-geometric inequality, l < 1, and

K ′(k) =
2

1 + k

∫ ∞

0

1√
z2 + 1

√
z2 + l2

dz =
2

1 + k
K ′

(
2
√

k

1 + k

)

Set k → 1− k′

1 + k′
.

K ′
(

1− k′

1 + k′

)
= (1 + k′)K ′(k).

Two more identities can be obtained by setting k → √
1− k2. We make a table.

K ′(k) =
2

1 + k
K ′

(
2
√

k

1 + k

)
K(k) =

2
1 + k′

K

(
1− k′

1 + k′

)

K ′(k) =
1

1 + k′
K ′

(
1− k′

1 + k′

)
K(k) =

1
1 + k

K

(
2
√

k

1 + k

)

Define τ(k) =
K ′

K
(k). Then we can combine the upper-left and lower-right

equations to get

τ(k) = 2τ

(
2
√

k

1 + k

)
=

1
2
τ

(
1− k′

1 + k′

)

It is evident that, since K ′ is monotonically decreasing and K is monotonically
increasing, τ is also monotonically decreasing (and continuous). In the limit we
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Table 1. Singular moduli

τ k

1 1/
√

2 0.7071√
2 0.4142√
3 0.2588√
4 0.1715√
5 0.1188√
6 0.0851√
7 0.0626√
8 0.0470

have τ(0) = ∞ and τ(1) = 0. Given τ ≥ 0, then, there exists exactly one value of
k for which it is true that τ = τ(k).

Lemma. If τ(k) = 1, then k = 1/
√

2.
Obvious since

√
1− k2 = k, so K(k) = K ′(k). ¤

Lemma. If τ(k) =
√

2, then k =
√

2− 1.
Because

τ(k′) =
K

K ′ (x) = 1/τ(k),

this is the same as finding a solution to the equation

τ(k) = 2τ(k′),

but this is true iff

k′ =
2
√

k

1 + k
.

This leads to a quartic,

1− 2k − 2k3 − k4 = 0

or
(k2 + 1)(k2 + 2k − 1) = 0.

Hence, k =
√

2− 1. ¤

7.1. Classical modular equations.
Pick an odd number n. Begin with the integrand in the definition of K,

1√
1− x2

√
1− k2x2

dx.

Look for a polynomial P of degree (n− 1)/2 so that the equation

1− y

1 + y
=

(P (−x))2(1− x)
(P (+x))2(1 + x)

.

is invariant under the substitution x → 1/kx, y → 1/ly.
Then we will prove that

M(k, l)√
1− x2

√
1− k2x2

dx =
1√

1− y2
√

1− l2y2
dy,

where M(k, l) depends only on k and l.
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Solve for y in the equation above. It becomes

(7.1) y =
(P (+x))2(1 + x)− (P (−x))2(1− x)
(P (−x))2(1− x) + (P (+x))2(1 + x)

=
xU

V
,

where U and V are polynomials in x2, defined by the equations

V + xU = P (+x)2(1 + x).

V − xU = P (−x)2(1− x).

That is to say, V is the even part, and xU is the odd part.
In order for the equation (7.1) to be invariant under the substitution x → 1/kx,

y → 1/ly, it should be true that

1
ly

=
1
kx

U(1/kx)
V (1/kx)

y =
kx

l

V (1/kx)
U(1/kx)

.

Let cf(x), the complement of f , denote (kx)n−1f(1/kx) for any function f . If
f is a polynomial of degree n − 1, f(x) = pn−1x

n−1 + pn−2x
n−2 + · · · + p1x + p0,

then
cf = pn−1 + pn−2(kx) + · · ·+ p1(kx)n−2 + p0(kx)n−1.

In particular, ccf = kn−1f . Define ĉf = k−(n−1)/2cf , so that the outcome of
ĉĉf is just the function f again. (This is true for any function f , since ccf =
c[(kx)n−1f(1/kx)] = (kx)n−1/xn−1f(x).)

We ask for the following to be true.

U

V
=

y

x
=

k

l

ĉV

ĉU
.

This will be true if

U =

√
k

l
ĉV.

This is a set of (n−1)/2 quadratic equations in the coefficients of P . (Both sides
are even polynomials of degree n−1.) We can solve these equations parametrically
for degree 3. See section 7.2.

Assume that P , k, l have been chosen so that (7.1) has the property stated
above. Then

1− y =
P (−x)2

V
(1− x) 1 + y =

P (+x)2

V
(1 + x)

1− ly =

√
l

k

ĉ[P (−x)2]
V

(1− kx) 1 + ly =

√
l

k

ĉ[P (+x)2]
V

(1 + kx)

The first row follows from y = xU/V . The second row follows from the computation

V − lxU = ĉ

(
ĉV − l

kx
ĉU

)
= ĉ

√
l

k

(
U − 1

x
V

)
=

√
l

k
ĉ[P (−x)2](1 − kx)

We define the polynomial Q by

Q(x)2 =

√
l

k
ĉ[P (x)2] or Q(x) = 4

√
l

k
k(n−1)/4x(n−1)/2P

(
1
kx

)
.
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Then

1− y =
P (−x)2

V
(1− x) 1 + y =

P (+x)2

V
(1 + x)

1− ly =
Q(−x)2

V
(1− kx) 1 + ly =

Q(+x)2

V
(1 + kx)

It is clear that y = 0 when x = 0 and y = 1 when x = 1. We now make the
assumption that the derivative dy/dx is positive when 0 < x < 1. We have to check
this for the particular U , V that appear in section 7.2.

This makes x 7→ y : [0, 1] → [0, 1] an increasing bijection. Therefore,
∫ 1

0

1√
1− y2

√
1− l2y2

dy =
∫ 1

0

1√
1− x2

√
1− k2x2

(xU)′V − xUV ′

P− P+ Q−Q+
dx.

We have written e.g. P− for P (−x).
All we need to do now is prove that this second factor, which we will call M ,

M =
(xU)′V − xUV ′

P− P+ Q−Q+
,

does not depend on x.
Note that the polynomials V − lxU = V (1 − ly) and V + lxU = V (1 + ly) are

divisible by Q− and Q+ respectively. Since

(xU)′V − xUV ′ =
1
2
(V + xU)′(V − xU)− 1

2
(V − xU)′(V + xU)

=
1
2l

(V + lxU)′(V − lxU)− 1
2l

(V − lxU)′(V + lxU)

the numerator of M is divisible by both P− P+ and Q−Q+.
If they are not coprime, then V 2−x2U2 and V 2−l2x2U2 share a common factor,

so V and xU are not coprime.
Assume that V and xU are coprime (again, we have to check this later). Then

P− P+ and Q−Q+ are coprime, and the numerator of M is divisible by the product
P− P+ Q−Q+. Hence M is a polynomial, and by comparing the degrees of the
numerator and denominator, it must be constant.

Therefore,

M ≡ U(0) V (0)
P (0)2 Q(0)2

=
U(0)
V (0)

since P (0)2Q(0)2 = (V − xU)(V − lxU)/(1− x)(1− lx)
]
x=0

= V (0)2.

Theorem. Fix a degree n. Suppose that the polynomials U and V , defined as
above, solve the equation U = (k/l)1/2ĉV . If y = xU/V is increasing on [0, 1], and
xU and V have no common factor (for fixed k, l), then

∫ 1

0

1√
1− y2

√
1− l2y2

dy =
∫ 1

0

1√
1− x2

√
1− k2x2

U(0)
V (0)

dx.

In the language of elliptic integrals,

K(l) =
U(0)
V (0)

K(k).

Note that the equation relating U to V is only solvable for certain k and l. For
n = 3, once k is chosen, the value of l is uniquely determined. See the next page.

¤
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7.2. The cubic modular equation.
Suppose that the degree of P is one, so that P = a+bx. Scaling P by a constant

makes no difference, so we will write P = 1 + αx. Then

V + xU = 1 + (2α + 1)x + (α2 + 2α)x2 + αx3.

V = 1 + (α2 + 2α)x2

U = (2α + 1) + α2x2

Writing out U = (k/l)1/2ĉV , we get the two equations

α2 =

√
k3

l
(2α + 1) =

1√
lk

(α2 + 2α)

or
α(α + 2)
(2α + 1)

=
√

lk.

Hence
√

α3(α + 2)
(2α + 1)

= k

√
α(α + 2)3

(2α + 1)3
= l

and

√
kl +

√
k′l′ =

α(α + 2)
(2α + 1)

+
(

(1− α2)(1 + α)2

(2α + 1)
(1− α2)(1− α)2

(2α + 1)3

)1/4

= 1.

Here α is a parameter, and we should check that α is uniquely defined in terms
of k when 0 ≤ k ≤ 1.

To derive the above equation, we compute

l′ =
√

1− l2 =

√
(1− α)2(1− α2)

(2α + 1)3

and a similar equation for k′. Since l′ and k′ satisfy the relationship above, we
suspect that they are also related parametrically, and we look for β which will give
k(β) = l′ and l(β) = k′ when substituted into our parametrization.

Let β be the root of

(2α + 1)(2β + 1) = 3 or α =
1− β

2β + 1
.

Then

l′ =

√
β3(β + 2)

2β + 1
= k(β), k′ =

√
β(β + 2)3

(2β + 1)3
= l(β).

So l′ and k′ are related, but with a different parameter, β.
In section 7.1 it was proved that

K(l) =
U(0)
V (0)

K(k) = (2α + 1)K(k)
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under two assumptions. First,

(xU)′V = ((2α + 1) + 3α2x2)(1 + (α2 + 2α)x2)

xUV ′ = 2x2((2α + 1) + α2x2)(α2 + 2α)

(xU)′V − xUV ′ = α3(α + 2)x4 + [−α(2α + 1)(α + 2) + 3α2]x2 + (2α + 1)

= α3(α + 2)x4 − (2α3 + 2α2 + 2α)x2 + (2α + 1)

= (α(α + 2)x2 − (2α + 1))(α2x2 − 1)

But (2α + 1)/α(α + 2) > 1 when 0 < α < 1, so there are no roots of this
polynomial between zero and one.

We could have got this result by considering P and Q, since it is not necessary
to make the first assumption to prove that M is a constant. You can check that

(xU)′V − xUV ′ = (2α + 1)P− P+ Q−Q+

if you like.
The inequality (2α + 1)/α(α + 2) > 1 also shows that V and xU are coprime,

which was the second assumption.
We get to use the result of section 7.1 to produce the equations

K ′(k) = (2β + 1)K ′(l) K(k) = (2α + 1)−1K(l),

and
K ′

K
(k) = (2β + 1)(2α + 1)

K ′

K
(l),

but since we know that (2β + 1)(2α + 1) = 3,

τ(k) = 3τ(l).

The relation between the moduli k and l is parametric, but above we showed
that they are also related by √

kl +
√

k′l′ = 1.

Let 0 < k < 1. The derivative of the expression F (x) =
√

kx+
√

k′x′ is monotonic
in x. It is clear that F (0) and F (1) ≤ 1, and F (k) = k+k′ ≥ 1. Therefore, F (x) = 1
has precisely two roots.

One of the roots is l. To find the other root, consider the equation 3τ(m′) = τ(k′),
which has exactly one solution m ∈ (0, 1). We have already proved that m′ and k′

are related by √
m′k′ +

√
mk = 1,

so m is the other root.
Since 3τ(m′) = τ(k′), it follows that τ(m) = 3τ(k). Hence m < k < l.

7.3. The roots of
√

kl +
√

k′l′ = 1. Given k ∈ (0, 1), let l1 > k and l2 < k be the
two roots of √

kl +
√

k′l′ = 1
in the interval (0, 1). Then

τ(k) = 3τ(l1) =
1
3
τ(l2).
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7.4. The sixth singular modulus.
The sixth singular modulus is the value of k which satisfies the equation

τ(k) =
K ′

K
(k) =

√
6.

Let it be called k6, and also let k2/3 be the solution of τ(k) =
√

2/3. Since τ(k′) is
the reciprocal of τ(k), the equation above can also be written τ(k) = 6τ(k′).

We proved in section 7.1-7.2 that, when k and l are in the interval (0, 1) and
√

kl +
√

k′l′ = 1

then τ(k) = 3τ(l) or τ(k) = 1
3τ(l). This allows us to deduce the value of k6.

The following argument is copied from (Berndt and Chan). It is a special case
of a more general argument due to Ramanujan. Substitute

k → 2
√

x

1 + x
l → x′.

The above equation becomes

(7.2) 4

√
4x(1− x)

1 + x
+

√
x(1− x)

1 + x
= 1.

When x is a root of this equation then τ(k) = 3±1τ(l) becomes

τ

(
2
√

x

1 + x

)
= 3±1τ(x′),

or, referring to the transformation formulae at the beginning of section 7,

τ(x)2 = 2× 3±1.

Therefore, if x is a root of (7.2), then τ(x) =
√

6 or τ(x) =
√

2/3. Set

u = 4

√
4x(1− x)

1 + x
.

Then (7.2) becomes

u +
1
2
u2 = 1,

which is readily solved. We find that the positive root is u =
√

3− 1.
Solve

4x(1− x)
1 + x

= u4 = 28− 16
√

3 = 4(2−
√

3)2.

This is conveniently written as

x2 + (c− 1)x + c = 0,

where c = (2−√3)2 is defined in section 3. The solution of this equation is

x =
1− c

2
±

√
(c− 1)2 − 4c

2
=

1− c

2
±
√

2c = 2
√

3− 3± (2
√

2−
√

6).

In fact,

k6 = 2
√

3− 3− 2
√

2 +
√

6 = (2−
√

3)(
√

3−
√

2) =
√

v

k2/3 = 2
√

3− 3 + 2
√

2−
√

6 = (2−
√

3)(
√

3 +
√

2) =
√

1− u

in the notation of section 3.
We now plug these back into the argument.
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